Learning Indistinguishability from Data

Frank Hoppner', Frank Klawonn', Patrik Eklund?

Department of Electrical Engineering and Computer Science
Emden University of Applied Sciences
Constantiaplatz 4
D-26723 Emden, Germany

2Department of Computer Science
Umea University
SE-90187, Sweden

Abstract

In this paper we revisit the idea of interpreting fuzzy sets as repre-
sentations of vague values. In this context a fuzzy set is induced by a
crisp value and the membership degree of an element is understood as
the similarity degree between this element and crisp value that deter-
mines the fuzzy set. Similarity is assumed to be a notion to distance.
This means that fuzzy sets are induced by crisp values and an appro-
priate distance function. This distance function can be described in
terms of scaling the ordinary distance between real numbers. With
this interpretation in mind, the task of designing a fuzzy system cor-
repsonds to determining suitable crisp values and appropriate scaling
functions for the distance. When we want to generate a fuzzy model
from data, the parameters have to be fitted to the data. Thi leads to
an optimization problem that is very similar to the optimization task
to be solved in objective function based clustering. We borrow ideas
from the alternating optimzation schemes applied in fuzzy clustering
in order to develop a new technique to determine our set of parameters
from data, supporting the interpretability of the fuzzy system.

1 Introduction

Fuzzy sets are often understood on a purely intuitive basis. The role of
the membership degrees is nothing more than a weighting concept. As a



consequence, learning from data in the setting of fuzzy systems becomes a
mere parameter tuning task.

This is, of course, not always true, if we for instance think of a possibilistic
interpretation of fuzzy sets. However, a data driven possibilistic framework
usually remains in the general context of probability theory, although set
valued random variables might be considered.

In this paper we revisit the interpretation of fuzzy sets on the basis of
equality relations and establish learning techniques that are based on this
interpretation.

Section 2 establishes the connection between equality relations and fuzzy
sets. The underlying fundamental principal is a scaling of the ordinary dis-
tance between real numbers. Section 3 discusses fuzzy systems and their
interpretation in the view of the previously introduced concepts. The devel-
opment of an algorithm to automatically generate a fuzzy system from data
in terms of the provided interpretation of fuzzy sets is explained in section
4.

2 Equality Relations

An equality relation (w.r.t. a t-norm %) on the set X is a fuzzy relation
E: X x X —[0,1] satisfying

(E1) E(z,z) =1, (reflexivity)
(E2)  E(z,y) = E(y, x), (symmetry)
(E3) E(z,y)* E(y,2) < E(z, 2). (transitivity)

Sometimes FE is also called a similarity relation [12, 8], indistinguishability
operator [10], fuzzy equality (relation) [2, 6], fuzzy equivalence relation [9] or
proximity relation [1], also depending on the chosen t-norm.

In this paper we mainly concentrate on equality relations w.r.t the Luka-
siewicz t-norm defined by a x f = max{a + f — 1,0}. There is a duality
between equality relations w.r.t the Lukasiewicz t-norm and pseudo-metrics
bounded by one: A pseudo-metric 6 bounded by one induces an equality
relation £ by F =1 — ¢ and vice versa.

There are various connections between fuzzy sets and equality relations
starting from pioneering work like [10, 11]. Here we focus on the interpreta-
tion of fuzzy sets as vague points induced by crisp points and an underlying
equality relation. The fuzzy set u,, induced by the point o € X in the pres-
ence of the equality relation F is defined as the (fuzzy) set of all elements
that are (fuzzy) equal to xg, i.e. pz, = E(x,20). When X is an interval and



the equality relation E is defined in terms of the standard metric on X by
E(z,y) =1 —min{|z — y|, 1}, then p,, is a triangular fuzzy set.

Scaling [4] is an important concept in this view of fuzzy sets. The idea
behind scaling is to modify the standard metric by scaling factors, stretching
the distance (and decreasing the associated equality degrees) in regions where
it is important to distinguish well between values and contracting the distance
(and increasing the associated equality degrees) in regions where the exact
value is not very important in the considered context or application.

In this way, if the interval X = [a,b] is the underlying domain, to each
element x € X a scaling factor ¢(z) > 0 is associated, indicating how im-
portant the exactness of values in the neighbourhood of x is. The scaled
distance between two points z1, 9 € X is then

/:2 c(x)dx|.

This means that the scaling function ¢(x) induces a transformation

£ (a8 — [o,/abc(x)dx], :El—)/amc(s)ds

and the distance between two points x1, x5 € X is not measured in X but in
the transformed (scaled) domain.

In fuzzy systems it is very popular to work with ‘fuzzy partitions’ of a real
interval [a, b] that use trapezoidal membership functions at the boundaries
and triangular membership functions whose membership degrees add to one.
Such fuzzy partitions are uniquely determined by points a < 271 < 29 < ... <
z, < b where the trapezoidal membership functions are defined as

1 ifa<z<uz
p(x) = s it <z <z
0 otherwise
and
1 ifz, <z<b
() = ¢ =2t e,y <z <,
0 otherwise.

The triangular membership functions are given by

=Ly <z <
Ti—Ti—1

pi(r) = § oE= ifr <o < forie{2,...,n—1}. (1)
0 otherwise



When we choose the scaling function ¢(z) as

c(x) =

0 fa<z<ziorz,<z<b 2)
e Hwig <z <u,
we obtain an equality relation and the fuzzy sets yu; are exactly the fuzzy sets
ltz; that are induced by the points z; in the context of the equality relation
derived from the scaling function ¢(x).

3 Fuzzy Systems in the View of Equality Re-
lations

So far we have considered a single interval endowed with an equality relation
so that single points induce fuzzy sets. In applications as for instance in
fuzzy control we have to deal with various domains for input and output
variables simultaneously. Especially the rules of Mamdani fuzzy controllers
can be interpreted in the context of equality relations where each fuzzy set
can be seen as induced by a single point in the presence of a suitable equality
relation [5]. Nevertheless, in such a case we have to build the product space
of the considered domains and must aggregate the equality relations to a
joint one on the product space.

In principal, we could extend the concept of a scaling function to product
space ¢ : IR" — [0,00). However, this would mean that we would have to
define the distance between two points x € IR" and y € IR" in the following

way:
inf{ /P o(s)ds

Unless ¢ is a potential function and the value of the integral is independent
of the path, it would in general not be tractable to compute this distance.

When we consider equality relations on product spaces, the crucial notions
are aggregation and independence.

As long as we assume some kind of independence of the equality rela-
tions, aggregation can be done in a straight forward way. It turns out that
this seems to be the underlying assumption behind many fuzzy controllers.
However, taking the concept of scaling seriously, the independence assump-
tion seems not to be justified in typical control applications. Consider a
controller using the error and the change of error as input variables. Usually
it is not very important to consider the change of error, when the error is
large, since then a strong control action has to be carried out anyway. This

| P is a path from z to y}.
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Figure 1: A transformation

means that we might use a small scaling factor for the domain representing
the change of error. However, when the error is almost zero, it is very im-
portant to know the value of the change of error almost exactly, in order to
take the right control action. This would speak in favour for a large scaling
factor for the domain representing the change of error. The scaling or the
indistinguishability in these two domains does not seem to be independent.

A detailed discussion of the independence concept in the context of equal-
ity relations is not the topic of this paper. Nevertheless we would like to point
out some facts.

Independence can be defined in different ways. One possibility is to say a
structure on a product space X x Y is formed by two independent structures
on X and Y, if we can fix any element of X and always obtain the struc-
ture on Y and vice versa. In probabilistic terms this independence notion
simply requires for two random variables P(Z; = 21|Zy = 2z9) = P(Z, = z).
This would mean that Z; is independent of Z,. In probability theory we
immediately have that this implies that Z5 is also independent of 7, i.e.
P(Z2 = ZQ|Z1 = Zl) = P(Z2 = ZQ).

The following example illustrates that the situation is different for equal-
ity relations. Consider the unit square and the metric defined by the trans-
formation t(z,y) = (x, (1 — 0.52)y) (see figure 1), i.e. the distance between
two points (1, y1) and (x4, y5) is the distance between the transformed points

| t(z1,41) — t(z2, 90) || -
We obviously have

|| t(zl,yl) - t(Iza?Jl) || = |$1 — 2|,



so the distance on X is independent of the element y; € Y. However, in this
case the distance on Y strongly depends on the choice of the element in X.

In the following we restrict our considerations to equality relations on
product spaces that obtained by applying an aggregation operation to scaling
induced equality relations on the single domains. In [7] a general discussion
on how equality relations can be aggregated. For reasons of simplicity we
only consider the aggregation operation minimum and product.

There are various approaches to fuzzy systems on the basis of equality
relation. In the following we consider a very simple type of fuzzy system.
The domain of each input variable is endowed with a piecewise constant
scaling function of the form (2) and the corresponding reference points x; are
given. The rules assign to each combination of reference points of different
input domains a crisp output value. In this way we avoid the problem of
defuzzification. The specification of a fuzzy controller reduces in the context
to the choice of suitable reference points and appropriate output values. The
scaling functions are implicitly given by the reference points. In principal,
we could choose the reference points and the scaling functions more or less
independently. But if we assume that we try to minimize the number of
reference points, we only have to specify a new reference point, when the
previous reference point does not provide any information, i.e. when the
membership degree of the corresponding fuzzy set reaches zero. With this
philosophy the reference points and the scaling functions should not be chosen
independently.

4 Equality Relations Induced by Data

Now that we have clarified the interpretation of fuzzy sets in terms of scaling
and indistinguishability, we can try to design learning techniques for fuzzy
systems that are based on these ideas.

Fuzzy clustering (for an overview see for example [3]) is very much in the
spirit of our concepts: Clusters are usually represented by single points and
more sophisticated algorithms can even incorporate a scaled distance adapted
to the data. However, the membership degrees are derived in a different way
from the distance function and the scaling is always an individual scaling for
each cluster.

We will introduce a clustering-like alternating optimization technique that
is devised to overcome these problems and is more in the spirit of the proposed
interpretation of fuzzy sets.

Let us consider a two-dimensional fuzzy system (two input variables)
which defines a function f : X x Y — Z by means of



e n fuzzy singletons yu; : X — [0, 1] with core z;,
e m fuzzy singletons v; : Y — [0, 1] with core y; and
e n -m output values z; ;
and thus n - m rules of the type
if x is approximately z; and y is approximately y; then z is z;

Then, the output value f is given by

) = St T TO)1,0) 2
W= ZLZ%T(M(@WJ‘(Q))

where T is a t-norm. The parameters of the fuzzy system are the fuzzy set
core values x = (21, 9, ..., Tn), ¥ = (Y1, Y2, ---, Ym) and the output values z =
(21,105 21,25 <3 ZLims 22,15 - Znm)- We assume that the input space is bounded
and fix z1/x, to the minimum/maximum value (same for y;/y,,). Then the
triangular fuzzy sets y; are given by (analoguously for v;). This means that
we do not admit trapezoidal membership functions at the boundaries of the
interval:

(z) = ﬁ if o <2<y
m 0 otherwise
Lo i, 1<z <T,
T — Tn—Tn—1 ‘_ 3
tin(2) { 0 otherwise (3)

The fuzzy sets p; for 1 < ¢ < n are defined as in (?7).

In this section we consider the automatic adaption of fuzzy systems of
this type to a given data set, where T is either the minimum or the product.
Given a set of samples S C X XY x Z drawn from a function f : X XY — Z,
that is V(z,y,2) € S: f(x,y) = z+e, the minimization of the approximation
error of a fuzzy system f

e(x,y,zS) = Y (flz.y)—2) (4)

(z,y,2)€S

is a nonlinear optimization task. In the following sections, we propose an
alternating optimization method that minimizes a locally scaled error func-
tion (4). The method works for arbitrary dimensions DIM € IN and is not
restricted to the two-dimensional case, however, for the sake of simplicity we
continue our discussion with DIM = 2.



4.1 Partitioning the Input Space

Due to the restrictions on our fuzzy sets p; and v, we have a natural par-
titioning of the input space X x Y into rectangular areas (or hyperboxes in
arbitrary dimensions). Figure 2 illustrates this in case of a fuzzy system with
n =4 and m = 5. Within each rectangle R, ; = {(z,y) € X x Y |z; <z <
Tiy1 ANYj <y < yj41} the output value f(x,y), (z,y) € R;, is fixed by the
adjacent 2P™ rules only, because the other rules have a zero membership
degree in this area. In figure 2 the four rules for the shaded rectangle R, 3
are

if x is approximately z, and y is approximately ys then z is 2, 3
if x is approximately x5 and y is approximately y, then z is 294
if x is approximately z3 and y is approximately ys then z is 233

if z is approximately z3 and y is approximately y, then z is 234

The participating fuzzy sets are drawn with thick lines in figure 2.

Within each rectangle Ry, the function f depends on eight numbers (in
general 2DIM+1 numbers): Ty, Tri1, Yi, Yis1s 2y 241> Zka1g and zpy1gq1-
We define

ﬁk,l(% y) = f|RkJ (z,y)
k+1 +1
Zik j—i;l T (i), v5(y)) « 25
k+1 +1
zik jJ;l T (pi(),v(y))

(5)

Note that within the restriction fA|Rk,, the membership degrees p; and v;
are linear functions and there is no need for considering multiple cases as in
the piecewise definition of y; and v;.

For every point (z,y) in the X x Y plane we define

1,if (1‘ y) €ER;;
6i i = ’ ’ J
7]($ay) {O,If (x,y) g Ri,j

Note that for any (z,y) € X x Y there is only one pair (7, j) such that
d;.j(x,y) equals 1. Therefore, we can reformulate the function f as

(6)

n m

fA(may) = Zzéi,j(may)gi,j(‘xay) (7)

i=1 j=1



Figure 2: The x and y vectors partition the input space X x Y into rect-
angular regions. The z vector specifies the value of f at the vertices of the
rectangle.

and the error as

e(xy,zS5) = Y ( )2
(z,y,2)€S
n m 2
S (Zzé,wyyz,gmy) 3
(z,y,2)€S \i 7j=1

> ni%my(m,ymy) )2 (8)

(z,y,2)€S =1 j=1

In the following two sections we examine the local definition of f (that is
Gi;) in dependency of T.



4.2 Using the T,4-norm

In this section we consider the T-norm
T:XxY = Z, (x,y)—z-y 9)

In this case the denominator of gy, in (5) luckily becomes 1, which sim-
plifies the definition of g;; considerably. We have

—~
sl

ez, y) = (@) - vly) - 26y +
() - g (y) - 2k +
Mk+1($) vi(Y) - Zrs1g +
(

Hk+1 55) Vl+1( ) Zk+1,1+1

= (($k+1 — ) (Y41 — y)zk,l) + (10)

—~
=

(Thi1 — o) (Y — y) 2k 1) +
(@ = 24) (Yig1 — Y) Zhgr +
(z — ) (y — yz)2k+1,z+1)/ (Trt1 — 2x) (Y11 — 1)
Figure 3 shows an example of g3, which defines f within area Ry (cf.
figure 2) with 203 =8, 204 =0, 233 = —2 and z34 = 10.
The denominator Ay := (Tr41 — 2%) (Y41 — yi) in (10) is the size of the

area of rectangle Ry ;. Instead of minimizing error (8) we locally scale the
error within rectangle R; ; by A, ;:

> 5i,j(fﬂ,y)(|§i,j(fﬂ’y) — 7] 'A”')Q

(z,y,2)€S

- A 615, 9) (31, y) - 2
- ,J 2,7 Y gz,y (1‘7 y) z
)ES

(zyy,2

which leads us to a modified error measure

e (x,y,25) = Z 225,ny d;j(z,y, 2) (11)

(zy,2)e8 i=1 j=1

where d; ; : X xY x Z — R is given by

10
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Figure 3: Function ]?|R213 with T(a,b) =a-b.

dij(7,y,2) = (9ij(z,y) — Z)QAz?,j
(10)
= (($i+1 —2)(Yj1 — Y)ziy) +
(@iy1 — 2)(y — Yj)Zij41) +
(2 — ) (Yje1 — ¥)Zig1,j +
(

Tr—= %‘)(y - yj)zi+1,j+1 -

2(ip1 — ) (Y1 — yj))2

Vie' =0, Vye'=0, and V,e' =0.

11

For a fuzzy system specified by (x,y,z) to be a (local) minimizer of the
scaled error function (11), we have a zero crossing in the first derivatives

Thanks to the multiplication with the area of the rectangle, the zero
gradient vectors yield a system of linear equations in each case. We minimize
the error €' by alternatingly minimizing with respect to z assuming x and y
to be constant, then with respect to x assuming y and z to be constant, and
then with respect to y assuming x and z to be constant. The algorithm is
depicted in figure 4.



initialize x and y uniformly
update z by means of linear equation system Ve’ =0
repeat
update x by means of linear equation system Vye' = 0
update y by means of linear equation system Vye' =0
update z by means of linear equation system Ve’ =0
until maximum number of iterations reached or
error change drops below threshold

Figure 4: Algorithm for estimating a fuzzy system.

Figure 5(a) shows the function f(z,y) = sin(z) - ;5 together with 200
samples on its surface, X =Y = [0,27]. This data set has been used to
estimate a fuzzy systems with n = m = 4 as described above and the result
after 12 iteration steps is shown in figure 5(b). The original function f is
approximated very well. Of course, since we minimize ¢/ we cannot guarantee
that the conventional least-squares error e is also minimized, however, in this
example we recognized a decrease in the sum of squared error with each step.

(a) 200 samples. (b) Learned fuzzy system f.

Figure 5: The original function f(z,y) = sin(z)- 13 is drawn in both images

in light gray, the black function corresponds to the learned fuzzy system after
12 iteration steps.

The local error scaling seems to have no dramatic effect in figure 5, be-
cause the size of the rectangular regions does not differ that much. Figure

12



6 shows another example f(x,y) = ... where we can expect a greater vari-
ety in the area size. Note that the uniform initialization is really poor in
this example (still n = m = 4). Initially, we have y, &~ 2.1 and y3 ~ 4.2
and the best solution is ys ~ 4.4 and y3 ~ 5.3. Thus, the algorithm has
to “replace” ys by y2. As we can see from figure 6(b), the algorithm has
done very well after 20 iterations. The final result is remarkable, because in
terms of the error function e there is a strong local minimum near the initial
solution (adjust y3 &~ 5 but leave y, half way between y; and y3). During
the iterations, the algorithm shortened the distance |y3 — y»| which leads to
smaller, long-stretched rectangles. The errors within these rectangles are not
weighted that much so that these patches become “more flexible”. It seems
that in this example, the local error scaling helped to find the best solution.

(a) 200 samples. (b) Learned fuzzy system f.

Figure 6: The original function f(z,y) = sin(z)- 713 is drawn in both images

in light gray, the black function corresponds to the learned fuzzy system after
20 iteration steps.

4.3 Using the T ;,-norm

In this section we consider the T-norm
T: XxY = Z, (x,y) — min(z,y) (12)

Due to the definition of our membership functions (3), all z4; and v; within
Ry, are linear functions. When aggregating two membership functions using

13



the T hin-norm, we still have piecewise linear functions. The X x Y plane is
once more subdivided, every rectangle consists of four triangular subregions,
as shown in figure 7. In each of the subregions the term T (y;(z),v;(y)) is a
linear function, i € {k,k + 1} and j € {[,l 4+ 1}. However, the denominator
of g, does not evaluate to 1 but lies in the interval [1, 2], as shown in figure
8. But at least, within the triangular subregions the denominator is also a

linear function. Thus, for each subregion we have gy (z,y) = %, where
E and F are linear functions.
Y Y

Figure 7: Further subdivision of Ry, in case of T(a,b) = min(a, b).

Figure 9 shows an example of g, 3, which defines f within area Ry 3 (cf.
figures 3 and 7) with 203 = 8, 204 = 0, 233 = —2 and 234 = 10. At a
quick glance ¢ seems to be linear within the triangular subregions, but not
perfectly: The linear function in each subregion is divided by a term that is
1 along the edge of the triangle that is shared with the rectangle Ry ; and 2
at the center of the rectangle (cf. figure 8).

Proceeding in a similar way as in section 4.2, we minimize a locally scaled
error function e’ instead of (4). This time, the scaling factor has been chosen
to be Ay, - F(z,y), where F denotes the denominator of gi;. Besides the
multiplication by the size of the region Ry ,;, we additionally multiply by a

14
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Figure 8: Denominator of §;, with T (a,b) = min(a, b).

factor between 1 near the border and 2 in the centre. This means, that the
resulting fuzzy systems will approximate the data especially well in the center
of the regions Ry, whereas it will tolerate larger errors at the border of Ry .

This may cause some undesired effect on the resulting fuzzy system. From
the examples seen so far we can already conclude that the triples (x;, y;, 2 ;)
— from which the fuzzy rules are created — are in general not very good
approximations of the function. In order to approximate the data inside the
patches Ry the z; ; values are almost always slightly above or below f(x;, y;).
(Usually there are more data vectors inside a patch Ry than near the border.
Therefore it is better to tolerate larger errors near the border to minimize
the total sum of squared errors.) If we use a scaling factor that emphasizes
the interior of the patches and does not care that much about the border,
we expect that this effect becomes even more evident.

We therefore consider a second variant to optimize the fuzzy system,
where we assume that the output f is a piecewise linear function — that
is, we assume that the denominator F(z,y) of gi; is always 1. This is not
true, of course, but we have already seen in figure 9 that the effect of the
denominator influences the curvature of f not that much. Figure 10 shows
the results for both cases. The original function is the same as in figure 5.

By visual inspection we would slightly prefer the second variant (figure
10(b)), although the total sum of squared errors e does not differ significantly.
Compared to the results of figure 5 the total error is slightly higher if we use
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Figure 9: Function f|R2,3 with T(a,b) = min(a, b).

the Tmip-norm (in this example). Using T i instead of Tpeq increases the
computational cost by a factor of almost 4, since each of the regions Ry is
subdivided in four subregions (in the two-dimensional case).

5 Conclusions
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