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Abstract. For systematic analyses of quantitative mass spectrometry data a 
method was developed in order to reveal peptides within a protein, that show 
differences in comparison with the remaining peptides of the protein concerning 
their regulatory characteristics. Regulatory information is calculated and 
visualised by a probabilistic approach resulting in likelihood curves. On the 
other hand the algorithm for the detection of one or more clusters is based on 
fuzzy clustering, so that our hybrid approach combines probabilistic concepts as 
well as principles from soft computing. The test is able to decide whether 
peptides belonging to the same protein, cluster into one or more group. In this 
way obtained information is very valuable for the detection of single peptides or 
peptide groups which can be regarded as regulatory outliers. 
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1   Introduction 

Comparative analyses between normal and pathological states of biological systems 
are an important basis for biological and medical research. Therefore, quantitative 
analyses of biological components, e.g. proteins, are of particular importance. 
Proteins are the basic components of cells and responsible for most of the processes in 
organisms. The basic structure of proteins are amino acid chains, which can be 
digested into smaller chains termed peptides. The totality of proteins, called the 
proteome, is highly dynamic and can vary significantly concerning its qualitative and 
quantitative composition due to changed conditions. A common technology for the 
analysis of the proteome is called liquid-chromatography mass spectrometry (LC-
MS/MS). 

In the meantime besides protein identification, mass spectrometry enables relative 
peptide quantitation by LC-MS/MS. One of the most popular technologies for this 
purpose is called iTRAQ™, which is based on chemical labelling of peptides. 
iTRAQ™ allows comparative analyses of up to eight proteinogenic samples in 
parallel (see [1], [2]). After iTRAQ™-labelling of peptides from different samples 



and subsequently LC-MS/MS analysis a so-called mass spectrum is available for 
every detected peptide. The obtained mass spectrum contains information on the 
amino acid sequence as well as information on the relative concentrations of the 
actually measured peptide in all analysed samples. Concentration of a peptide is given 
by a so-called “intensity”. In order to compare the concentrations of a peptide under 
different conditions, a ratio is calculated by dividing the intensities measured from the 
different samples (or conditions). The resulting ratio is termed “expression ratio” and 
“regulation factor”, respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Likelihood curves represent the most suitable regulation factor of peptides (top) and 
proteins (bottom), respectively as well as robustness of regulatory information. High iTRAQ™ 
intensities correlate positively with the robustness and thus result in narrow Likelihood curves 
on the one hand and in small IR values on the other hand. 

 
In several studies noise was observed in iTRAQ™ analysed data. Particularly if a 

peptide is detected with low intensities, impreciseness of the calculated ratio is 
significantly higher than in the case of peptides, that were measured with high 
intensities. This effect is called “intensity-dependent noise”. Based on this 



observation we developed a mathematical model for the estimation of noise inherent 
in quantitative data analysed from iTRAQ™-labelled peptides analysed by LC-
MS/MS (for details see [3]). Subsequently, we were able to derive several 
applications from our noise model, e.g. likelihood curves for the calculation of the 
most suitable regulation factor for single peptides and total proteins as a collective of 
all contributing peptides ([4]). Furthermore, likelihood curves provide evaluation of 
robustness of the calculated regulation factor, which again is strongly depending on 
measured intensities. 

Depending on the aim of performed analysis various views on a protein may be 
useful. Peptides can be visualised separately by individual likelihood curves or they 
can be combined and visualised by a shared protein likelihood curve. Fig. 1 shows 
both peptide view (top) and protein view (bottom) for the same protein. Likelihood 
curves give the likelihoods for regulation factors, which are deviating from the 
calculated ratio to a greater or lesser extent. X-axis refers to regulation factors, y-axis 
refers to the likelihood.  

Robustness of the underlying data is proportional with both the height and the 
slope of the produced curve. Furthermore, robustness is represented numerically by 
the interval of robustness (IR), which is given on the upper right hand side within 
each plot. IR gives the length of the minimal interval that is covered by 80% of the 
area beyond each area-normalised likelihood curve (normalised to ∫=1). All peptide 

curves are fairly robust (IR between 0.06 and 0.17) and most of them are fluctuating 
near -1.2 (no regulation). Robustness of the resulting protein curve of all peptides is 
extremely high (IR = 0.03) and the regulation factor approximates the regulation 
factor of the majority of peptide curves. 

2   Distance measure 

Studying regulatory information of peptides, which is a common practice in biology 
(especially in proteomics), requires the detection of peptides, that differ in their 
regulatory characteristics from the remaining peptides of the same protein. Studies 
like this are important in order to reveal mismatched (by software) peptides or for the 
investigation of special peptide modifications. For the analysis of large protein 
samples resulting in very large datasets (several hundreds of proteins) cluster analysis 
for the automatic identification of proteins consisting of more than one group of 
peptides concerning their regulatory behaviour is a very helpful means. In the 
majority of cases all peptides, that belong to the same protein, fluctuate near the same 
regulation factor and therefore build one cluster. Hence, distinguishing between 
proteins containing one cluster of peptides and those, which have more than one 
peptide cluster is the main focus in this approach. 

For the following cluster analysis a distance measure dij giving the distance of two 
elements i (prototype) and j (peptide j) is to be defined. In order to compare area-
normalised likelihood curves i and j the size of the overlapping area a is the distance 
measure if there is an overlap of curves. Then the distance dij is given by 

 



 
 
 
 

(1) 
 
 
with a = size of overlapping areas of curves i and j. 
In the case of non-overlapping curves i,j dij is defined by the distance with regard 

to the scaling of the x-axis which is given by the distance of the highest calculated 
regulation factor xmax of the lower regulated element el1 and the lowest calculated 
regulation factor xmin of the higher regulated element el2. Since dij = 1 for curves 
without overlap, this is the minimum value for non-overlapping curves and must be 
added to the calculated distance. Therefore, in the case of non-overlapping curves i 
and j the distance measure dij is given by 

 
 

 (2) 

3   Testing for the existence of a single cluster 

In search of proteins with significant differences in regulation of related peptides 
proteins are out of interest for further analyses, which consist of only one cluster. 
Those proteins are to be identified and can be discarded for following investigation. 
Therefore, we developed a method for the detection of consistently regulated proteins 
in order to obtain the remaining proteins consisting of differentially regulated 
peptides. For these purposes we created a hybrid approach. We combined the 
probabilistic proceeding for the calculation of protein and peptide likelihood curves 
with a prototype based fuzzy clustering method . 

Our approach for the detection of one-cluster-proteins is based on the generation of 
a prototype for all regarded peptide likelihood curves and subsequently removing the 
most distant peptide curve in terms of the prototype curve. In this way the set of 
likelihood curves is reduced little by little and the distances of the removed curves are 
plotted by the means of a scatterplot. Analysis of entries within the scatterplot returns 
the result whether there is only one cluster or not. In detail the procedure is as 
follows: 

First of all, a prototype curve representing all likelihood curves of the protein is 
calculated. Since the distance measure dij is based on area overlaps the prototype 
curve must consist of those parts of all peptide likelihood curves, where most of the 
peptide curves are overlapping. According to likelihood curves the prototype curve 
has to consist of connected areas and the likelihood must always be greater than zero 
at every discretised regulation factor. In detail, calculation of the prototype is done by 
the detection of the number of overlapping curves for every area that is located below 
one curve at least. Afterwards, areas, that are part of the highest number of likelihood 
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curves are added to the prototype curve subsequently. This process is finished as soon 
as the total area of the prototype curve reaches 1. 

The second step consists in repeatedly calculating the distances dij of every peptide 
likelihood curve and the prototype by application of (1) and (2) and removing the 
most distant object until there are no likelihood curves left. The respective distances 
of the removed curves are plotted against the number of iterations within a scatterplot. 

Finally, the scatterplot shows whether the protein consists of only one or more 
different regulatory peptide clusters. In the case of one cluster the entries are arranged 
homogeneously and close to each other. In the case of multiple clusters on the other 
hand, there are groups of entries. After removing the last curve of a cluster a 
significant step is observable in the scatterplot. For automatic detection of steps a 
threshold is defined: A step is regarded to be significant if the absolute value between 
the new entry et+1 and the previous entry et is greater than the fivefold mean 
difference c∆  from the mean value cx  within the actual regarded (or lost) cluster. 
Hence, 
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It should be noted that the distance of two curves within a cluster is always smaller 
than 1. 

The following figures illustrate this effect: Fig. 2 shows six peptide Likelihood 
curves for a protein, which are clearly clustering into two groups. The corresponding 
scatterplot (Fig. 2 insert) shows two groups as well. According to the likelihood plot, 
every group is composed of three entries. The step between the third and the fourth 
entry identifies the loss of the last curve from one cluster and is equivalent to the 
distance of both clusters. 
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Fig. 2. Likelihood plot consisting of six peptide curves, which are clustering into two 
groups. Insert: The corresponding scatterplot clearly indicates that the protein is 
composed of more than one peptide cluster. 
 

Fig. 3 gives an example for a protein, whose peptides are regulated very similarly. 
Therefore, our method returns that only one cluster is found, which is indicated by 
one group of entries that are located close to each other. For comparability the scaling 
of y-axis is the same as in Fig. 2. 

 

 

 

 

 

 

Fig. 3. Likelihood plot consisting of five peptide curves, which are clustering into one group. 
Insert: The corresponding scatterplot clearly indicates that the protein is composed of one 
peptide cluster. 

Unfortunately, the test is not able to differentiate between different clusters, whose 
distances to the main cluster are similar. Since the test is using distances without 
consideration of the localisation of the likelihood curves (lower or higher regulated 
than the main cluster) two similar distant clusters result in a common step in the 
scatterplot. Therefore, the test is not suitable for the determination of the number of 
clusters, but only for the discrimination of one cluster on the one hand and multiple 
clusters on the other hand. An example is given in Fig. 4: Next to the main cluster (in 
the middle) are additional clusters on the left as well as on the right. Both additional 
clusters are located very closely to the main cluster but they are not overlapping. 
Regarding the inserted scatterplot, it can be observed clearly that four curves are 
removed in the beginning and after a step the remaining curves are considered. 
Curves removed first originate from both additional clusters (the left cluster consists 
of three curves which can not be kept apart visually in the likelihood plot). 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Likelihood plot consisting of 17 peptide curves, which are clustering into 

three groups. The leftmost cluster is composed of three curves, the cluster in the 
middle consists of 13 peptide curves and the rightmost cluster contains one curve. 
Distances between the main cluster in the middle and the leftmost and the rightmost 
cluster respectively are more or less equal. Insert: The corresponding scatterplot 
clearly indicates that the protein is composed of more than one peptide cluster. 

4   Conclusion 

We have presented an approach for clustering complex data types in the form of 
likelihood curves. Our method has the advantage that it can cope with small datasets 
as well as with a small number of cluster, even one cluster. Determining the number 
of clusters based on validity measures as it is for instance done in fuzzy cluster 
analysis (see for instance [5,6]) is not suitable for such datasets. Although our 
approach as it is presented here is only designed to distinguish between one cluster 
and more than one cluster, our method can also be applied to determine the number of 
clusters in the following. In case more than one cluster is detected in the dataset, the 
main cluster corresponding to the likelihood curves after the last significant drop in 
the scatter plot like in Fig. 2 is removed from the dataset and our method is applied 
again to the remaining data. A similar idea of subtractive clustering based on 
removing distant data points, however for standard datasets, but not for likelihood 
curves, has also been proposed in [7,8]. 
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