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Abstract

Finding a system of information granules corresponds to searching for
the right level of abstraction to solve a problem at hand. In this chapter
we discuss the purpose of such partitions and their desirable properties.
The granules can be defined by exploiting expert knowledge, but they
must be learned from data in case such knowledge is not available. We
review several ways to derive one-dimensional and multidimensional par-
titions automatically from data with a special focus on utilizing clustering
algorithms for this task.

Keywords: partition, clustering, discretization, quantization, granulariza-
tion

1 Introduction

Collecting large amounts of data has become a routine in business, industry
and science nowadays. However, in order to handle large amounts of raw data
and extract and present the inherent information, techniques are required that
provide compressed and compact representations of the aspects of interest. In

1



the extreme case a collection of measurements might be represented by a single
value, for instance the mean or the median. Although at least one of the crucial
characteristics of the data can be covered by a mean or median, such simplified
concepts loose by far too much of the information contained in the data to be of
practical use in applications.

The two cases – the raw data and a single value in the form of the mean or
median – can be viewed as two extremes of granularities to represent the data.
By treating all data items as single and separate objects, the finest possible
granularity, loss of information is avoided for the price of difficulties in handling
the data and the loss of interpretable compressed representations. On the other
hand, a mean or median is easy to understand, but looses most of the information
contained in the data. The truth lies somewhere in between these extremes.
In order to handle, represent, and manage the data in an understandable and
efficient way, information granules are introduced. An information granule – or
simply granule – is a conceptual notion that has instances expressed in a data
set [2, 41, 29]. In the simplest case, a granule is a subset of the data, for instance
described by an interval. A typical form of such crisp granules results from a
discretization of a continuous variable. Instead of considering exact values, ranges
are introduced, i.e. the domain, for instance the interval [a, b] is partitioned into
k sub-intervals [a, x1), [x1, x2),. . ., [xk−1, b] where a < x1 < x2 < . . . < xk−1 < b.

Although in some cases, there might be a canonical way to choose the bound-
aries xi for the intervals, such a discretization often causes problems, since values
close to a boundary of one of the intervals, but lying on different sides of the
boundary belong to different granules, although their difference might be ex-
tremely small. In order to avoid such problems, a reasonable approach is to
give up the idea that an object must either belong or not belong to a granule.
This leads to granules in the form of fuzzy sets or probability distributions. Also
overlapping crisp granules might be considered, leading to rough sets [31], an
approach that will not be considered in this chapter.

An information granule is more than just a collection or set of elements. It
should be describable by a specific property or concept as in the example of
discretization where a granule is defined by the lower and upper bound of the
corresponding interval.

The choice of appropriate granules strongly depends on the specific purpose
and application. In the fields of business intelligence and data warehouses, online
analytical processing (OLAP) [39] exploits granules in a canonical way. OLAP
provides views on a data set based on different levels of refinements. Most at-
tributes handled within OLAP are categorical with an additional hierarchical
structure. This means that the attribute can take values from a finite, refinable
domain. For instance, an attribute representing a location might have different
levels of refinement like country, state, region, town. Or an attribute for time
might be refinable from year to quarters, months and days. As in this example,
for categorical attributes there is often an obvious way to refine or coarsen them,

2



defining granules directly. This does usually not apply to attributes with a con-
tinuous domain. Notions like magnitude are good candidates for granules in the
case of continuous attributes. The crucial problem is to define the appropriate
granules suited best to the data and to the underlying task or purpose. Therefore,
this chapter will focus exclusively on continuous attributes.

The purpose of the granules can be simply to describe important or inter-
esting patterns or substructures in the data. A typical application is subgroup
discovery [40], where the aim is to find granules in which a certain class of objects
is significantly over- or underrepresented compared to the overall distribution of
the class in the data set. However, in most applications it is important to cover
more or less the whole data set by granules. In order to avoid redundant infor-
mation, the granules should not overlap or, at least not too much. In this sense,
the granules should roughly represent a partition, not necessarily in the strict
mathematical sense.

With this motivation in mind, the chapter is organized as follows. Section
2 provides an overview on the possible contexts and purposes in which granu-
larization is of interest. Section 3 discusses useful and important properties of
partitions induced by granules. Section 4 is devoted to a short introduction to
cluster analysis, one of the main techniques to construct granules from data in
an unsupervised context. Many similarity-driven approaches to granularization,
which are described in section 5, rely on clustering methods. Finding granules in
a supervised learning context is outlined in section 6 before the summary in the
conclusions.

2 Purpose of Granularization

The general problem of finding granules in the context considered here, can be
described as follows. Given a data set or a universe of discourse D ⊂ IRp, how
can we cover or partition this domain by a finite set of meaningful concepts?

First of all, the overall purpose of the granularization should be specified. In
the case of exploratory data analysis, where one of the main aims is to discover
interesting or meaningful structures in the data set, the granules are used for
compact descriptions, groupings or segmentations of objects or data. Typically,
the granules are found on the basis of a similarity or distance measure. The
identification of meaningful substructures without specifying in advance which
objects should belong to a certain substructure is called unsupervised learning.

Supervised learning refers to a context, where the prediction of an attribute
based on other attributes is the final goal. Regression refers to the case, when
the attribute to be predicted is a numerical one, whereas the term classification
is used for problems where the attribute to be predicted is of categorical nature.
In other words, in supervised learning we want to describe a classification or
regression function f : D → Y where Y is a finite set in the case of classification
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and Y ⊆ IR in the case of regression. The granules are involved in the description
of the function f . Nevertheless, the task of finding suitable granules is only
indirectly supervised in the sense that the granules should support the definition
of a suitable function f as much as possible. The granules are found by optimising
f . In this sense, the identification of the granules is task-driven, guided by the
specific classification or regression problem.

It should be noted that, even in the context of supervised learning, it is
sometimes popular to identify granules in an unsupervised manner, ignoring the
attribute to be predicted. After the granules are identified in this purely unsuper-
vised way, they are then used for the purpose of supervised learning. However,
there is no reason why granules, derived for descriptive purposes, should also
perform well in a specific prediction task.

Granules can be defined by a human expert or determined automatically based
on an available data set. When the granularization is carried out completely by a
human expert, a suitable formal language, model or tool to describe the granules
is required. This will not be the focus of this contribution. We will only provide
guidelines that should be taken into account when designing granules as well as
an overview on techniques to determine granules automatically based on data.

3 Properties of Partitions

As mentioned before, we are not only interested in isolated granules, but in gran-
ules that can cover the domain of interest roughly in terms of a partition. There
are many ways of organising a partition, some of the aspects that may be taken
into account will be addressed in this section. All these aspects or properties
influence both, the suitability of the partition for a given task as well as the
interpretability, so it depends on the application and the purpose of the granu-
larization (see section 2) which of these properties a partition should possess.

3.1 Degree of Uncertainty

The traditional notion of a partition is the following: Given a data set D =
{x1, .., xn} and a number of subsets Ci, i = 1..c, the system of sets {Ci | i = 1..c}
is called a partition, if the following properties hold: the elements of a partition
are non-empty, pairwise disjoint and cover the whole data set.

∀i ∈ {1, .., c} Ci �= O/ (1)⋃
i=1..n Ci = D (2)

∀i, j ∈ {1, .., c} Ci ∩ Cj = O/ (3)

Any element of D belongs to exactly one element of the partition, there is no am-
biguity about the data-granule relationship. Although convenient from a mathe-
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Figure 1: A typical fuzzy partition.

matical point of view, many concepts in the real world are not that strict. Some-
times an object may belong to two granules equally likely. In this case, condition
(3) is removed and we speak of an overlapping partition.

As soon as uncertainty comes into play, one may want to express the degree
of uncertainty in a more expressive way. We reformulate the above mentioned
properties by a characteristic function χCi

: D → {0, 1}, where χCi
(xj) = 1 ⇔

xj ∈ Ci. Rather than considering a binary decision χCi
(xj) ∈ {0, 1} we then

consider the belongingness to Ci as a matter of degree – as a fuzzy set determined
by a membership function µCi

: D → [0, 1] with the unit interval as its range.
The definition of a fuzzy partition is not as obvious as the generalisation of the

notion of a crisp set to the concept of a fuzzy set. In most practical applications,
where fuzzy sets are used as granules to describe a domain, these fuzzy sets satisfy
the condition that they are disjoint (cf. (3)) with respect to the �Lukasiewicz t-
norm. The �Lukasiewicz t-norm is defined by α 	 β = max{α + β − 1, 0} and
can be viewed as one of many possible choices for a [0, 1]-valued conjunction or
intersection operation. Two fuzzy sets µ1 and µ2 are disjoint with respect to the
�Lukasiewicz t-norm, if µ1(x)+µ2(x) ≤ 1 holds for all x in the considered domain.

The covering property (2) is very often satisfied with respect to the dual t-
conorm to the �Lukasiewicz t-norm, the bounded sum defined by α⊕β = min{α+
β, 1}. In other words, the sum of membership degrees should add up to at least
one for all elements in the considered domain.

Figure 1 shows a typical fuzzy partition that satisfies the disjointness property
with respect to the �Lukasiewicz t-norm and the covering property with respect to
the bounded sum. These two conditions will be satisfied by any fuzzy partition on
an interval where the membership degrees of two neighbouring fuzzy sets always
add up to one and at most the supports of two fuzzy sets overlap in every point.

Fuzzy partitions can either be defined on the domain or on the considered
data. In the latter case, the membership degrees of the data objects x1, .., xn to
the granules C1, .., Cc can be defined by a membership matrix U = [ui,j]j=1..n,i=1..c.
The above mentioned disjointness and covering conditions translate in this case
to the condition

∑c
i=1 ui,j = 1 for all j = 1, .., n. This equation can also be used

to replace the two conditions (2) and (3) for crisp partitions on finite domains,
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where only ui,j ∈ {0, 1} is allowed. In this case we assume ui,j = 1 ⇔ xj ∈ Ci.
There might be various reasons for introducing uncertainty in the partition.

Uncertainty may already be contained in the domain, for instance in the form
of noisy measurements or vague concepts that are used to describe the granules.
Another reason might be to avoid sharp boundaries between the granules, when
the belongingness of data to granules is used in further processing. For instance,
when each granule is associated with a function in terms of a local model, then
switching from one granule to another one will result in discontinuous behaviour
in the output function unless the corresponding functions fit to each other at
the boundaries of the granules. In order to avoid this effect and achieve smooth
switching between the local models, membership degrees can be taken into ac-
count to combine the local models according to the membership degrees.

The condition
∑c

i=1 ui,j = 1 can be seen as a probabilistic constraint for the
partition. The membership degree ui,j could be interpreted as the probability
that object xj belongs to the granule ci. However, even if this probabilistic inter-
pretation is intended, granules are seldomly interpreted in terms of probability
distributions. Mixture models [27] are a very popular probabilistic approach in
clustering and classification. But the resulting distributions might look as shown
in figure 2. The two Gaussian distributions might be used for classification in
order two distinguish between two classes. Both distributions might have the
same a priori probability 0.5. In this case an object in the form of a real number
would be assigned to the Gaussian distribution that yields the higher likelihood.
This means that values far away from zero will be assigned to the flatter Gaussian
distribution drawn with a dotted line, and values closer to zero will be assigned
to the other Gaussian distribution. It is obvious that these two Gaussian distri-
butions do not represent useful granules, since they overlap too much. Therefore,
we will not consider probability distributions as granules in this chapter.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2 -1  0  1  2  3

Figure 2: Two Gaussian distributions.

Even though the probabilistic constraint is also very common for fuzzy par-
titions, it can be dropped and be generalised to a possibilistic framework [5]. In
this case, additional steps have to be taken into account in order to guarantee a
partition-like set of granules.
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3.2 Multidimensional and Hierarchical Granules

The considered domain for which the granules have to be defined is usually a
multidimensional space, typically a subset of IRp. A crucial problem is the de-
scription of multidimensional granules. A very intuitive approach consists in
defining granules or partitions for the single dimensions and then combine these
granules to describe multidimensional granules. In this case an implicit indepen-
dence assumption is made. Independence should not be interpreted in the sense
of probability theory, but in more general terms. When the granules are based
on similarity concepts, independence means that there is no interaction between
the similarities. In order to understand this effect, let us consider the two simple
examples in figure 3. The aim is in both cases a classification problem where the
circles should be separated from the squares. In both cases, looking at the pro-
jections to the single dimensions will result in a complete loss of information for
the separation of the two classes circle and square. Nevertheless, the left example
can still be treated easily by defining suitable granules on the single dimensions.
When each of the dimensions is partitioned into two granules as indicated by the
dotted lines, then it is easy to use these one-dimensional granules to define four
two-dimensional granules that will either contain only circles or only squares.

Figure 3: Cases for two-dimensional granules.

However, the right example in figure 3 is difficult to treat with combinations of
one-dimensional granules. Of course, with a sufficient number of one-dimensional
granules the dotted separating line can be approximated with combinations of
one-dimensional granules. But this is a typical case where an independent con-
sideration of the single dimension does not provide a helpful insight to the two-
dimensional problem.

Another problem in granularization is the number of granules or how coarse
or how fine the granularization should be chosen. In principle, it is possible
to consider independently different levels of granularization. However, this will
make it more difficult to switch between the different levels of granularization.
Therefore, it is recommended to choose hierarchical granules or partitions, when
different levels of granularization are required. Such hierarchical partitions might
be derived in a canonical way as for instance in the case of OLAP applications
or they might be found by hierarchical clustering techniques [20].
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Another popular approach is the concept of rough sets, where granules are
organized hierarchically [31, 37]. Having the notion of granule inclusion available,
the human way of focussing and generalizing can be emulated quite naturally.
The inclusion in a lower approximation of a granule is defined formally as the
satisfaction of additional constraints. Approaches to learn hierarchical granules
are often quite similar to hierarchical clustering algorithms.

4 Brief Introduction to Clustering

The problem of clustering is that of finding a partition that captures the similarity
among data objects by grouping them accordingly in the partition. Data objects
within a group (element of the partition) should be similar, data objects from
different groups should be dissimilar. It is immediately clear, that clustering
requires an explicit notion of similarity, which is often provided by means of a
distance (or dissimilarity) function d : D × D → IR+ or matrix D ∈ IRn×n

+ ,
|D| = n. A small value indicates that two objects are similar, a large value that
they are dissimilar.

type approach algorithm
linkage iteratively merge data objects with

their resp. closest cluster
hierarchical clustering
[38, 20]

density identify connected regions where the
data density exceeds some thresholds

DBScan [8], Clique [1]

objective
function

perform clustering by minimizing an
objective function that, e.g., minimizes
the sum of within-cluster distances

c-Means [28], FCM [6,
3]

Table 1: Types of clustering algorithms

There are several types of clustering algorithms and many algorithms of each
type available in the literature (table 1 shows only some representatives). The
choice of the clustering algorithm depends in the first place on how the dissimi-
larity information is provided. If only a dissimilarity matrix is given, relational
clustering algorithms have to be used. Usually, this approach can only be used if
the entities we are going to cluster are only a few, because the space (and time)
complexity is at least quadratic (the distance matrix contains a distance value
for each pair of entities). Whenever the data is numerical in nature, dissimilarity
functions such as the Euclidean distance can be utilized and there is no need for
storing n2 distances explicitly. Most clustering algorithms assume that such a
distance function is given.

Here, we briefly discuss only the c-means and fuzzy c-means clustering algo-
rithm, for the other techniques we refer to the literature [19, 18, 20, 17]. The
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c-means algorithm [28] partitions the available data into c groups by finding c
prototypical data objects that best represent the whole data set. Given a proto-
type, all data objects that are closer to this prototype than to any other, form
the cluster or group of this prototype. The algorithm iteratively performs the
following two steps: First, for all data objects, find the closest prototype (which
are initialized randomly at the beginning). Second, adjust each of the prototypes
to better represent the group by moving it to the centre of gravity of the group. If
we encode the belongingness of data object xj to prototype pi in a binary variable
ui,j, which is 1 if and only if xj is closest to pi (0 otherwise), then the c-means
algorithm actually minimizes

J1(U, P ; X) =

n∑
j=1

c∑
i=1

ui,j||xj − pi||2 (4)

by alternatingly minimizing J with respect to U = [ui,j] and P = (p1, .., pc).
The algorithm considers the belongingness of a data object to a prototype as

a binary decision, giving it the flavour of a combinatorial problem. The fuzzy c-
means variant of c-means [6, 3] turns the problem into a continuous one by making
the cluster membership a matter of degree (ui,j ∈ [0, 1] rather than ui,j ∈ {0, 1},
cf. section 3.1). Despite the relaxation, the minimization of (4) would still lead to
crisp membership degrees, therefore an exponent m for the membership degrees
is introduced, the so-called fuzzifier. (For a detailed discussion of the effect of the
fuzzifier and alternative approaches, see [21].) Thus, the fuzzy c-means algorithm
minimizes

J(U, P ; X) =
n∑

j=1

c∑
i=1

um
i,j||xj − pi||2 (5)

subject to the constraints
∑c

i=1 ui,j = 1 and
∑n

j=1 ui,j > 0. The necessary con-
ditions for a minimum of (5) w.r.t. pi (assuming ui,j to be constant) yields the
same as in the c-means algorithm: the prototypes have to be shifted into the
(weighted) centre of all data points in the group:

∀1 ≤ i ≤ c : pi =

∑n
j=1 um

ijxj∑n
j=1 um

ij

(6)

The minimization w.r.t. ui,j (assuming pi to be constant) delivers:

uij =

⎧⎪⎪⎨
⎪⎪⎩

1

Pc
l=1

„
‖xj−pi‖2
‖xj−pl‖2

« 1
m−1

in case Ij = O/

1
|Ij | in case Ij �= O/ , i ∈ Ij

0 in case Ij �= O/ , i �∈ Ij

(7)

where Ij = {k ∈ IN≤c | xj = pk}. The fuzzy c-means (FCM) algorithm is depicted
in figure 4. For a more detailed discussion of FCM and examples we refer to the
literature, e.g. [17].
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choose m > 1 (typically m = 2)
choose termination threshold ε > 0
initialize prototypes pi (randomly)
repeat

update memberships using (7)
update prototypes using (6)

until change in memberships drops below ε

Figure 4: The FCM algorithm.

If a hierarchical partition is desired, it can be obtained quite easily by recur-
sively applying a clustering algorithm to each of its clusters. In the case of a
fuzzy partition the objective function-based clustering algorithms can be modi-
fied easily to consider the degree of belongingness to the clusters by an additional
weight (see e.g. [11]). In [32] granules are represented by hyperboxes and these
granules are then themselves clustered in a hierarchical fashion.

Almost all clustering algorithms deliver a partition regardless of the data set
provided, that is, c-means yields c prototypes even in case of a uniform distribu-
tion without any cluster substructure. Thus, once a partition has been obtained
by a clustering algorithm, the question is whether it represents significant struc-
tural information or just random fluctuations. In the literature, one can find
many validity measures, see e.g. [12], that address global properties of the par-
tition (e.g. degree of ambiguity) or local properties of each individual cluster
(e.g. separation, compactness). Validity measures are also used to determine the
number of clusters in c-means or fuzzy c-means clustering.

There are two important properties of the fuzzy c-means algorithm: (1) it
derives fuzzy partitions (that is, allows overlapping granules, which is much more
realistic in many applications) and (2) the possibility of modifying the objective
function allows us to force FCM quite easily to consider additional aspects in
the resulting partition. If the purpose of granularization is purely descriptive in
nature, granularization and clustering become almost undistinguishable. How-
ever, as we have seen in section 2, quite often the partition must also fit in a
certain task or application and/or must be easily interpretable. The fact that
FCM can be tailored to specific applications by changing the objective function
makes FCM a good candidate also for task-driven granularization purposes.

5 Similarity-Induced Partitions

In this section we consider the problem of deriving a system of granules in an
unsupervised setting, e.g., the only information available to develop the granules
is the data itself, we cannot utilize any feedback in form of a classification or
approximation error to guide the process. If such information is available, section
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6 should be consulted. In an unsupervised context we cannot measure the fitness
for a specific purpose, so the granules should at least be representative for the
data from which the granules have been induced.

5.1 One-Dimensional Granules with Crisp Boundaries

Let us first consider the case of a single numerical attribute. It is common
practice in many data mining applications, that the set of values is discretized in
an equi-width or equi-frequency fashion, thereby obtaining a reduced number of
c intervals rather than (up to) n individual values. In the equi-width approach,
all intervals share the same width. To define such a partition we only need to
know the minimum and maximum value and set the number of intervals c a
priori. Such a set of intervals hardly qualifies as a system of granules, because it
does not reflect the underlying data distribution. In the equi-frequency approach
each granule covers the same number of data objects: having sorted all instances
we introduce a new interval every n

c
values. Figure 5 shows the effect of both

approaches in an example data set of 20 values. An equi-width partition (c = 5)
is shown in subfigure (a), the intervals do not reflect the data distribution, the
fourth interval does not contain any instances. Subfigure (b) shows the case of
an equi-frequency partition (c = 4). Again, the partition does not characterize
the underlying data: The values near the middle are separated into two different
intervals although they form a compact group of similar values. In contrast, the
results of clustering algorithms lead to much more meaningful partitions, as shown
in subfigures (c) and (d). Density-based approaches identify those instances that
do not reach a desired data density as outliers, therefore in subfigure (c) the
granules do not cover the complete range of values. Clustering algorithms that
identify prototypical values, e.g. c-means, can be used to define granules, too, by
introducing boundaries half-way between the prototypes, as shown in subfigure
(d).

(c)

(b)

(a)

(d)

Figure 5: Interval-partitions (shaded regions) for a numerical attribute obtained
through (a) equi-width partitioning, (b) equi-frequency partitioning, (c) density-
based clustering, (d) prototype-based clustering.

If the attribute under consideration is of a categorical scale, there is no in-
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formation whatsoever to group the data by similarity – except in the case that
an expert provides additional information by means of a similarity matrix. If
such a matrix is given, relational clustering algorithms such as the single-linkage
hierarchical clustering algorithm [38] can be used to obtain a partition. If the
scale is ordinal, we have two options: either we provide a distance matrix and use
relational clustering or transform the attribute into a numerical one by assigning
numbers to the ordinal values and proceed as before with numerical values.

5.2 One-Dimensional Granules with Fuzzy Boundaries

The systems of information granules shown in figure 5(c) and (d) also illustrate
the unsatisfying consideration of outliers by crisp partitions. The two instances
between the leftmost partitions may be considered as outliers (not belonging to
any granule) or as equally poor representatives of both of the leftmost granules.
It may, however, easily happen that these two instances are assigned to different
granules if a crisp assignment is required (as in subfigure 5(d)). The uncertainty in
the assignment to a granule is better captured when fuzzy memberships are used,
because then a smaller membership degree indicates a less confident assignment
to a granule.

The most simple way to turn the interval granules from figure 5(d) into fuzzy
granules is by replacing the c-means algorithm with the fuzzy c-means algorithm.
The fuzzy membership functions of FCM are given analytically by (7) and the
only parameters are the cluster prototypes. Once the prototypes are determined,
the membership functions can serve as information granules. The left column
of figure 6 shows the fuzzy granules for three different degrees of fuzziness. The
fuzzier the granules get, the faster the membership functions approach the value
1
c

at the boundaries of the domain. This is because the farther we are away from
the prototypes, the less certain we can be that a value belongs to a particular
prototype. On the other hand, if we regard the introduction of fuzzy memberships
as a fuzzification of the crisp intervals in figure 5(d), the degradation near the
borders seems counterintuitive1. From that point of view, granules like those on
the right hand side of figure 6 are preferable.

This kind of membership function can be obtained by a modification of the
FCM objective function. The motivation for the modification proposed in [15]
is to avoid the unexpected local maxima (cf. bottom left plot in figure 6) and
the completely fuzzy membership degrees near the borders by rewarding crisp
membership degrees. Only where we have to switch between the cores of the
sets, fuzziness is pertained (cf. right hand side of figure 6). We introduce a
number of parameters aj ∈ IR≥0, 1 ≤ j ≤ n, and consider the following modified

1In case of a single attribute, this problem affects two granules at most, however, this is no
longer true when seeking for granules in high-dimensional spaces (section 5.3).
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Figure 6: Fuzzy membership functions. From top to bottom the fuzziness is
increased (m resp. η), left column: original FCM, right column: modified FCM.

objective function:

J(U, P ; X, A) =

n∑
j=1

c∑
i=1

u2
i,jd

2(xj , pi) −
n∑

j=1

aj

c∑
i=1

(
ui,j − 1

2

)2

(8)

Only the second term is new in the objective function, the first term is identical
to the objective function of FCM with m = 2. If a data object xj is clearly
assigned to one prototype pi, then we have ui,j = 1 and uk,j = 0 for all other
k �= i. For all these cases, the second term evaluates to −aj

4
. If the membership

degrees become more fuzzy, the second term increases. Since we seek to minimize
(8), this modification rewards crisp membership degrees. The maximal reward
we can give to obtain positive membership degrees is then

aj = min d2
∗,j = min{ d2

i,j | i ∈ {1, .., c} } − η (9)

where η > 0 is a constant that takes a similar role as the fuzzifier. The resulting
membership functions are

ui,j =
1∑c

k=1

d2
i,j−mind2

∗,j

d2
k,j−mind2

∗,j

(10)

Since the notion of a cluster prototype itself is not affect by this modification, the
prototype update equations remain the same. The resulting algorithm finds the
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Figure 7: Distance to Voronoi cell.

fuzzy partition by performing a three-stage alternating optimization, consisting
of

1. the calculation of the membership degrees via (10), assuming prototypes
and aj as being constant,

2. the calculation of the prototypes via (6), assuming memberships and aj as
being constant,

3. the calculation of the aj via (9), assuming prototypes and memberships as
being constant.

Figure 6 illustrates the resulting membership functions in the one-dimensional
case. Interestingly, even the multidimensional membership functions can be in-
terpreted in a very intuitive manner. Given a set of prototypes, the Voronoi cell
of a prototype p is the set of all points that are closer to p than to any other
prototype. It turns out [15] that the distance term d2

i,j − min d2
∗,j in the mem-

bership functions corresponds to a (scaled) distance to the Voronoi cell of the
respective prototype. This is illustrated for the 2D-case in figure 7. The fact that
the original FCM uses a squared Euclidean distance to the prototype, whereas
this modification uses a (scaled, but unsquared) distance to the Voronoi cell of
the prototype, makes it less sensitive to outliers.

If the application requires the same number of instances per granules, just as
with the equi-frequency partitions, FCM can also be biased towards uniformly
sized clusters [22].
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Figure 8: Granularization of single attributes does not provide a good starting
point for granularization in the two-dimensional space.

5.3 Multi-Dimensional Granules

If we have to deal with multiple variables, they may be granularized individu-
ally and independently as described in the previous section. Will the granules
obtained from the marginal data distributions automatically be qualified to com-
pose the granules in the higher-dimensional space? Figure 8 shows that this is
not true in general (see also section 3.2). The circles in the two-dimensional
plane shall represent regions of similar data, each circle may be considered as a
granule we seek to discover. In this particular example, the data regions slightly
overlap in the projection on each individual variable, such that an almost uni-
form marginal distribution is perceived (indicated along the axes). Given such
a uniform distribution, we will obtain arbitrary one-dimensional granules and it
is not very likely, that we can describe the two-dimensional granules by a cross-
product of one-dimensional granules. In this particular case, a clustering-based
partition may even detect that there are no subclusters at all and thus a single
granule will be sufficient. Although we have seen that the equi-width partitioning
(section 5.1) hardly qualifies as a system of granules, in this particular example
equi-width partitioning may actually outperform a clustering-based partition.

The example suggests to invert the approach: rather than developing the gran-
ules in the low-dimensional space and trying to approximate the high-dimensional
granules by a product of low-dimensional granules, we could find the high-
dimensional granules and extract low-dimensional granules from them. This can
be easily done by applying clustering algorithms directly to the high-dimensional
space2. The disadvantage of this approach is that different multidimensional
granules may lead to similar projections in the one-dimensional space. These

2We are simplifying at this point, because many clustering algorithms depend themselves on
the set of attributes. If different subsets of attributes are used, different clusters will be found.
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Figure 9: Illustration of the notation used in this section: d = 2 dimensions,
first dimension consists of c1 = 4 granules, second of c2 = 3 granules. The
multidimensional granules are composed out of one-dimensional granules and are
denoted by a tuple.

heavily overlapping granules should be identified and merged to obtain an un-
derstandable one-dimensional granularization (e.g. [36]). In such an approach,
where only the projection of multidimensional granules will be processed further,
it is advantageous to support merging by appropriate clustering algorithms that
align the clusters along the main axes only [24] or seek for clusters in the shape
of hyperboxes [32].

An alternative solution to this problem can also be found in a modified FCM
algorithm [16]: rather than seeking for c independent, multidimensional gran-
ules, we may look for one-dimensional partitions of ci granules each, such that
the multidimensional space is tesselated into

∏
i ci granules. The prototypes are

no longer optimized individually, but the grid of regularly distributed prototypes
is optimized as a whole. During optimization the aim is to find optimal multidi-
mensional granules, but in order to adjust the multidimensional granules we are
limited to the modification of the one-dimensional partitions.

Given d input variables, suppose we divide the domain of variable vi into ci

granules, induced by representatives pi,j , i ∈ {1, ..., d}, j ∈ {1, ..., ci} as illustrated
by the example in figure 9. We construct multidimensional granules by combining
the one-dimensional granules pi,j (one for each dimension i) and denote them by
a tuple (p1,i1, p2,i2, .., pd,id) where ik ∈ {1, .., ck}.

The granules of interest are the multidimensional ones, so our cluster proto-
types live in the multidimensional space and their total number is c =

∏d
k=1 ck.

But in contrast to the traditional FCM algorithm, where each of the prototypes
is optimized individually, our prototypes are constrained to lie on the grid defined
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Figure 10: Clustering with 9 prototypes that share their coordinates (3 x-values
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by the one-dimensional partitions. So the set of prototypes is given by

P = {(p1,i1, p2,i2, · · · , pd,id)
� | ik ∈ {1, .., ck} }

The standard FCM objective function remains unchanged, but has to take the
construction of the prototypes into account:

J =
n∑

j=1

c1∑
i1=1

c2∑
i2=1

...

cd∑
id=1

um
(i1,i2,..,id),j

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

x1 − p1,i1

x2 − p2,i2
...

xk − pk,ik

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥

2

(11)

(still subject to the same constraints on the membership degrees as before). The
multidimensional granules are parameterized by the one-dimensional ones, so to
optimize this objective function we have to solve for each of the pi,j individually.

That is, the large set of c =
∏d

k=1 ck multidimensional granules is parameterized

by a much smaller set of
∑d

k=1 ck parameters. The necessary conditions for a
minimum of the objective function (11) are given by [16]:

pl,r =

∑n
j=1

∑
(i1,i2,...,ik),il=r um

(i1,i2,...,ik),j · xl∑n
j=1

∑
(i1,i2,...,ik),il=r um

(i1,i2,...,ik),j

(12)

Since the derivation of the necessary condition arrives at a unique solution, con-
vergence of the iterative alternating optimization scheme is guaranteed [14]. Fig-
ure 10 shows the resulting cluster centres for a two-dimensional data sets: the
six parameters (three positions on both axes) define nine prototypes, forming a
regular grid that approximates the regions of high data density appropriately.
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6 Task-Driven Partitions

If the purpose of granularization is not only descriptive, the incorporation of
application specific information, i.e. the tailoring of the granules towards the
application at hand, always leads to better results. Additional information might
be a class label in the case of a classification tasks or an output value or error for
regression tasks.

There are two ways to exploit such additional information in the granular-
ization. One way is to use this information to minimize an error like the mis-
classification rate or the mean squared error directly by choosing or modifying
the granules. Another possibility is to use other measures that are related to the
actual goals, but do not guarantee an optimal choice with respect to the goal.

6.1 One-Dimensional Granules

There is a large variety of techniques to find granules for supervised learning from
which we can only present a selection.

A typical example for a granularization based on an indirect strategy is the
way in which decision trees are usually constructed. In order to build a classifier,
decision trees partition the domains of the single attributes in order to construct
the classification rules. We briefly recall a method to partition the domain of
a numerical attribute proposed by Elomaa and Rousu [7], an extension of the
algorithm described by Fayyad and Irani [9] for finding a partition splitting the
domain into two sets only. The partition of the domain of the numerical attribute
will be based on another categorical attribute that we intend to predict later on.

We consider a single numerical attribute j whose domain should be partitioned
into a predefined number t of intervals. Therefore, t − 1 cut points T1, . . . , Tt−1

have to specified. These cut points should be chosen in such a way that the
entropy of the partition is minimized. Assume that T0 and Tt are the left and
right boundary of the domain, respectively.

Assume, we have n data objects and ni (i = 1, . . . , t) of these fall into the
interval [Ti−1, Ti]. Let k� denote the number of the ni data that belong to class
�. The entropy in this interval is given by

Ei = −
c∑

�=1

k�

ni
· log

(
k�

ni

)
. (13)

The entropy of the partition induced by these cut points is simply the weighted
sum of the single entropies

E =
t∑

i=1

ni

n
· Ei. (14)

The weights are the probability or fractions for the corresponding intervals. The
aim is to choose the cut points in such a way that (14) is minimized.
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Sorting the data with respect to the values of the jth attribute, it was proved
in [7] that it is sufficient to consider boundary points only for finding an optimal
partition. If the class label changes directly before or after a value, this value
becomes a boundary point. The following example illustrates the concept of
boundary points that are marked by lines.

value: 0 1
class: c c

∣∣∣∣ 2 2 3
a a a

∣∣∣∣ 4 4
b b

∣∣∣∣ 5 5
a c

∣∣∣∣ 6 7 7 8
c c c c

∣∣∣∣ 9
b

∣∣∣∣ 10 10 11
a a a

Note that a boundary point occurs after 4 and also before 6 in the attribute j.
Since at least one object with value 5 in attribute j belongs to class a and at
least one object with value 6 in attribute j belongs to another class, namely class
c, it is necessary to introduce a boundary point after the second value 5 printed
in bold face style.

Once the boundary points are computed, the optimal partition minimizing
(14) for a fixed number t of intervals can be constructed. A recursive search
can be carried out to find the best partition among the

(
b

t−1

)
possible partitions.

Of course, a complete search can only be carried out, when
(

b
t−1

)
is reasonably

small. Otherwise, heuristic strategies as proposed in [25] might be used to find a
suboptimal solution.

Similar ideas can be applied to regression problems. Instead of entropy, the
variance in the numerical attribute to be predicted, can be taken into account.

Instead of using entropy also other measures are possible. The minimum
description length principle (MDL) [34, 35] is proposed in [10] to find good par-
titions. MDL is a technique for choosing the proper complexity of a model for a
given data set. The underlying idea is as follows. The aim is to encode the given
data set in such a way that a minimum amount of bits is required to transfer the
data over a channel. When a model to represent or approximate the data, this
model is used to compress the data. The total amount of bits to be transferred
are the compressed data as well as the description of the model. A very complex
model might lead to a very compact representation of the data, resulting in a
very effective compression. However, the amount of bits needed to transfer the
complex model as well might result in a larger total number of bits to be trans-
ferred. On the other hand, a very simple model will only need a few bits to be
transferred, but it will usually not provide a good compression for the data.

So far, the granularization or partition was considered to be crisp. But the
same strategies can be applied to obtain fuzzy partitions [25]. Once the cut points
for the crisp partition are determined, a suitable fuzzy partition can be defined as
shown in figure 11. In [26] an MDL-based approach to find good fuzzy partitions
is introduced.

MDL- and entropy-driven techniques for granularization are indirect ap-
proaches in the sense that they do not explicitly aim to optimise the actual
objective function like the misclassification rate or the mean square error. There
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Figure 11: A fuzzy partition induced by cut points.

are numerous specific techniques to optimise partitions in order to minimize an
objective function like the classification or the mean square error directly. These
techniques include local linear regression models, gradient descent methods, neu-
ral networks or evolutionary algorithms, especially in combination with fuzzy
systems [4, 30]. However, to discuss the granularization for such models in de-
tail cannot be within the scope of this contribution, since the methods strongly
depend on the underlying model.

6.2 Multi-Dimensional Granules

The techniques mentioned in the previous section focus on granularizations of sin-
gle attributes. The indirect methods consider the single attributes in an isolated
manner. The methods that try to minimize an error measure for the prediction
directly take the interaction of different attributes into account, although they
still focus on partitions for the single attributes. Although multidimensional gran-
ules are more flexible, they are usually difficult to interpret. Therefore, most of
the techniques focussing on multidimensional dependencies still try to maintain
granules for single attributes, but try to construct them based on their interaction
with respect to the variable to be predicted. In [25] techniques are proposed that
construct partitions on single variables based on entropy minimization where the
interaction of the attributes is taken into account in order to find the best par-
titions or to simplify partitions. Other methods try to find a multidimensional
grid [23] in order to find simple granules.

We have seen in section 5 that clustering-based methods are well-suited to find
systems of granules. Such unsupervised techniques can also be altered to reflect
additional information. This is for example helpful in case of partially labeled
data, e.g. when class information is only available for some data objects (see e.g.
[33]). The clustering techniques can be modified to additionally reflect either
class label information or the approximation error in a regression task. In both
cases, the objective function of the FCM algorithm is supplemented with an ad-
ditional penalty term that promotes pure granules [13] (classification problem) or
granules with a good fit [16] (regression problem). After that, we have no longer a
clustering algorithm. Since both, partitioning and classification/regression error,
are considered in the same objective function, an interdependency between the
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Figure 12: Interaction between partitioning task (Voronoi cell) and regression
task (local model).

granules and the models is established. A poor classification or fit (cf. figure 12)
can be resolved in the next iteration step by a better model and/or by modified
granules. Therefore, the partitioning of the input space indirectly influences the
classification or regression error and vice versa. To ease the interpretation of
the granules, the prototypes may additionally be organized on a regular grid, as
discussed in section 5.3, leading to Voronoi cells in the shape of hyperboxes.

7 Conclusions

Finding useful information granules is closely related to finding good partitions,
where a partition should not be understood in a strict mathematical sense. The
methods for defining and finding the partitions and the kind of partitions strongly
depend on the context in which the granules will be used. This chapter has pro-
vided an overview on different purposes for the use as well as various techniques
for the construction of granules. The choice of the granularization depends highly
on the specific application.

Nowadays, data is usually collected and stored in the finest granularity avail-
able to prevent loss of any information. This is, however, completely different
from the way humans perceive and understand the world. Depending on the level
of abstraction, humans focus on the data at different resolutions or granularities.
It is very often the case that the structure inherent in the data becomes evident
only at a specific level of abstraction. Exploiting the right granularity for an
application at hand is therefore essential in human problem solving and conse-
quently in the design and implementation of intelligent systems. For the case
of data mining it is quite often not the choice of the learning algorithm but the
choice of (knowledge-based or data-driven) granularization that decides about
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success or failure.
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[14] F. Höppner and F. Klawonn. A contribution to convergence theory of fuzzy
c-means and derivatives. IEEE Trans. on Fuzzy Systems, 11(5):682–694,
Oct. 2003.
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