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Abstract. A new clustering algorithm based on the principles of noise clustering that finds good 

clusters step by step is presented and examined. The algorithm can be applied to finding just a 

few substructures, but also as an iterative method to data partition including the identification of 

the number of clusters and noise data. The algorithm is applicable in terms of both hard and fuzzy 

clustering techniques. Its capabilities are studied over different distance metrics of cluster 

calculation. The algorithm advantages and drawbacks are discussed with illustrative and real data 

examples. A certain parallel between the algorithm proposed here and other clustering algorithms 

that are based on the idea to search one cluster at a time is provided. 
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1. Introduction 

Cluster analysis is an exploratory data analysis technique that aims at partitioning a given 

data set into clusters. A cluster is a group of data that can be considered as similar according to a 

suitable similarity or distance measure. Data objects assigned to different clusters should be 



dissimilar. 

Most clustering methods have to face the problem of characterizing good clusters among 

noise data. Rounding and grouping errors result from the inherent inaccuracy stemming from the 

collection and recording process of the data. The arbitrary noise points that just do not belong to 

any class being searched for are of a real concern. In fact, a single noise data can completely spoil 

the separation and thus the results of most least squired based clustering such as the K-means and 

fuzzy C-means algorithm (FCM) [1,2]. One promising approach to deal with noise data is noise 

clustering (NC) [7,8]. It maintains the principle of probabilistic clustering, but an additional noise 

cluster is introduced. NC was developed and investigated in the context of objective function-

based clustering as K-means or FCM and it has demonstrated its reliable ability to detect clusters 

among noise data.  

Although the original intention of cluster analysis is to partition a data set into 

“meaningful” substructures, clustering is often applied for other purposes. For instance, when 

fuzzy cluster analysis is applied in the context of generating fuzzy rules from data, it is very often 

used as a segmentation technique that simply partitions the data (in a fuzzy way), without putting 

a strong emphasis on well distinguished clusters. In other applications, like for example analysing 

gene expression data or astrophysics data, it is not necessary to partition the data into meaningful 

clusters, but to identify one or a few interesting clusters that might only cover a small portion of 

the data.  

Following the idea to search for just one cluster at a time a prototype-based clustering 

algorithm named Dynamic Data Assigning Assessment (DDAA) is proposed. It is based on the 

NC technique and finds single clusters step by step. The method can be used for two purposes: 

either in the sense of standard cluster analysis to determine the number of clusters automatically 

or in order to identify one or a few clusters that might cover only a portion of the data set.  



The paper is organised as follows. Second section briefly reviews the necessary background 

on the objective function-based clustering and the concept of noise clustering that we exploit in 

our approach. In third section we explain the underlying idea of the method and the algorithm 

itself. The capability of DDAA algorithm to deal with data spaces with different complexity is 

investigated by exploring the various distance measures to cluster calculation (Section 4). Fifth 

section shows how the algorithm is applied to a machine learning data set, whereas sixth section 

relates it to other clustering methods. 

 

2. Basic concepts 

Objective function-based clustering aims minimizing an objective function J that indicates 

a kind of fitting error of the clusters to the data. In this function, the number of clusters has to be 

fixed in advance. The underlying objective function for most of the clustering algorithms is [1]: 
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where N is the number of data points; c is the number of clusters; uik and dik denote 

correspondingly the membership degree and the distance of the k-th point 

][ 21 knkkk x,...,x,xx = , k = 1, ..., N, to the i-th cluster prototype, i = 1, ..., c; m∈[1,∞) is the 

weighted exponent coefficient which determines how much clusters may overlap. In order to 

avoid the trivial solution assigning no data to any cluster, i.e. setting all uik to zero, and to avoid 

empty clusters, the following constraints are introduced: 
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When we choose the fuzzifier m=1 we have }10{ ,uik ∈  at a minimum of the objective 

function (1) and the resulting partition will be crisp. 

 The parameters to be optimized are the membership degrees uik and the cluster parameters 

which finally determine the distance values dik. Each cluster is represented by a cluster prototype. 

In the simplest case, the cluster prototype is a single vector called cluster centre ][ 21 iniii v,...,v,vv = , 

c,...,i 1= . The distance of a data point k  to the i-th cluster is defined by a positive definite 

symmetric matrix Ai and the cluster centre as follows: 
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The minimization of the functional (1) represents a nonlinear optimization problem that is 

usually solved by means of Lagrange multipliers, applying an alternating optimization scheme 

[2]. This scheme alternatively considers one of the parameter sets, either the membership degrees 

or the cluster parameters as fixed, while the other parameter set is optimized, until the algorithm 

finally converges.  

The arbitrary noise points that do not belong to any comprehensible class have to be taken 

into account. The successful solution to deal with the noise in the data set is to collect the noise 

points in one single cluster [7]. For this purpose a virtual noise prototype with no parameters to 

be adjusted is introduced that has always the same (large) distance δ to all points in the data set. 

Let cluster number c be the noise cluster. Then, by definition we have 

dck = δ ,  for ∀ k. (4) 

The remaining c-1 clusters are assumed to be the good clusters in the data set. The objective 

function Jnoise that considers the noise cluster is defined in the same manner as in the general 

scheme for the clustering minimization functional (1) i.e. JJ noise ≡ , but with some additional 



specifications. The distances of every point N,...,k,xk 1=  are defined by (3) for all clusters 

11 −= c,...,i,i and by 

22 δdck =  for ci = . (5) 

The objective function Jnoise has the global minimum for a fixed noise distance δ  only if: 

a) for hard noise clustering (i.e. 1=m ) the membership degrees are: 

  0=iku for ∀ ji ≠  and  (6) 

  1=jku for j  such that ) 1min( c,...,i,dd ikjk == . 

b) for fuzzy noise clustering ( 1>m ) the membership degrees are 
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and the cluster centres of the good clusters are defined by the weighted mean value: 
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The specification of the noise distance δ is a matter of consideration for the particular data 

set. If δ is chosen too small, then most of the data points will be classified as noise, while for a 

large δ value even outliers will be assigned to good clusters. 

 

3. Dynamic data assigning assessment method 

Let us assume that the data set consists of only one good cluster among a certain number of 

noise data considered as a noise cluster. Thus, the two clusters could be separated in minimizing 

the objective function Jnoise, which is simplified for the case c=2 to the following form:  
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The distance kd  denotes the distance between every point kx  and the centre 1v  of the single 

good cluster. The membership degrees are calculated for a fixed δ :  

a) for hard noise clustering as 

  11 =ku and   02 =ku if the k -th point belongs to the good cluster, i.e. kd ≤ δ  and  (10) 

  01 =ku and   12 =ku if the k -th point belongs to the noise cluster, i.e. kd > δ . (11) 

b) for fuzzy noise clustering the membership degree to the good cluster is defined as  
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and the membership degree to the noise cluster is correspondingly defined as: 
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Since we are still in the framework of probabilistic clustering the following statement is 

valid to both clustering variants: 

kk uu 21 1 −= ,  N,...,k 1= . (14) 

Even if the data set contains more than one cluster besides the noise data, we can still 

exploit the idea of having only a single proper cluster plus noise data. For that, we do not try to 

identify all proper clusters in parallel, but only one of them in each clustering step. Data 

belonging to other clusters should be assigned to the noise cluster along with the noise data. The 

proposed method separates one cluster at a time based on the concept of noise via dynamical 

decrease of the noise distance. Thus, by this approach, it is not necessary to seek for a proper 

noise distance. 

The procedure starts by choosing a large noise distance, for instance the diameter of the 



data set, so that all data points are assigned to the good cluster and no data are considered as 

noise. Then, decreasing the noise distance stepwise by a prescribed decrement δ∆ , for each 

jδδ =  value we can determine the number of data belonging to the good cluster according to the 

membership degrees (crisp or fuzzy) to the good cluster. The index j denotes the current step of 

the noise distance reduction. At every noise distance jδ  the distance dk, N,...,k 1=  is calculated 

by (3). If the distance is less or equal to jδ  the current point xk is assigned to the good cluster, if 

not – the point is separated to the noise cluster. Afterwards, the number of points belonging to the 

good cluster )( jNin  is calculated. The unique cluster centre that defines the good cluster is 

calculated according to (8). It is obvious that by decreasing the distance δ  a process of ‘loosing’ 

data, i.e. assigning them to the noise cluster will begin. Continuing to decrease the noise distance, 

we will start to separate points from the good cluster and add them to the noise cluster until the 

good cluster will be entirely empty as all data will be assigned to the noise cluster. By decreasing 

δ  the cluster centre will also be shifted drastically, while data are removed from the good cluster. 

The described dynamics of moving data from the good cluster to the noise cluster can be 

characterized by a curve showing the number of data points assigned to the good cluster over the 

varying noise distance. The velocity )( jNin∆  via the noise distance alteration is also evaluated:  

.jNjNjN ininin )()1()( −−=∆  (15) 

Note that not the time is used for the δ -axis so these curves must be viewed from right to left, 

when we want to observe the behaviour over time. 

It is clear that if we loose actual noise points (i.e. from a region of low data density) the 

curve will almost remain in a plateau, whereas a strong slope should be observed when data from 

an actual cluster (with higher density than the noise data) are moved to the noise cluster. 

Normally, a number of clusters with different shapes and densities are presented in the data set. In 



this case, we will have a number of plateaus and a number of strong slopes in the curve. Plateaus 

indicate phases of loosing noise data, strong slopes characterise the situation when we loose one 

or more proper clusters to the noise cluster.  

The peaks obtained of the curve inN∆ correspond to the slopes in the inN  curve. The area 

of every peak is proportional to the number of points that are separated to the noise cluster within 

the current slope. If a small amount of data is separated to the noise cluster then the peak is small 

and vice versa – if the data amount is large, then the peak is large. 

For each peak s two important noise distances are determined. The right base of the peak 

denoted by )(max sδ  corresponds to the jδ -value at which the data assignment dynamics (15) is 

bigger than zero. It remains like this until the left base of the peak marked by the second 

important noise distance )(min sδ  occurs. It is located where the steep slope ends and the heavy 

loss of data to the noise cluster ceases. The area of each peak S(s) is represented by the sum of the 

)(in jN∆  values within the considered peak. Only significant peaks, whose area is larger than a 

predefined threshold tol are of a real concern: 
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The last significant peak (the left-most one in )(in jN∆ curve) occurs when the data points of 

the last data group are moved to the noise cluster. These data define a cluster that we remove 

from the whole data set. The other significant peaks also correspond to phases where at least one 

comprehensible cluster is shifted to the noise cluster. The data of the not significant peaks i.e. of 

the plateau phases should be considered as noise data. The whole procedure is applied again to 

the reduced data set and repeated until no more significant peaks are identified. 

The algorithm can be also applied in the context of fuzzy noise clustering if the 

membership degree is calculated by (12). The point is assumed to belong to the good cluster if its 



membership degree is bigger than a predefined value tolµ . However, being stricter in the 

identification of proper clusters the prescribed membership value should be increased and for a 

more tolerant identification, it should be decreased.  

The idea presented above was applied to identification of single clusters in large data sets 

[10] and shortly presented in [11]. Here it is summarized in the following Dynamic Data 

Assigning Assessment cluster identification algorithm: 

Step 1: Specify the decrement step δ∆ and threshold tol. If fuzzy DDAA clustering is 

applied specify tolµ . 

Step 2. Compute the curves Nin and ∆Nin  decreasing δ by the prescribed decrement δ∆ . 

Step 3: Find all peaks of ∆Nin curve and select the significant peaks according to (16). 

Step 4: Separate one good cluster determined by the last significant peak. 

Step 5: Subtract the separated points from the data set and repeat the procedure from Step 2 

for the remaining data points until no significant peaks could be found. 

 

As in most clustering algorithms we normalize the data set in advance in order to let each 

feature has approximately the same influence on the distance used for clustering. Note that the 

proposed algorithm automatically determines the number of clusters, whereas in standard 

objective function-based clustering additional strategies have to be applied in order to define the 

number of clusters. The next section deals with the algorithm ability to partition data spaces 

comprising clusters with different density, shape and orientation. 

 

4. Analysis of DDAA algorithm by numerical examples 

The shape of the selected good clusters is determined by the choice of the matrix Ai that 

forms the distance metrics (3). For instance, if the identity matrix is incorporated we obtain the 



standard Euclidean distance and thus, spherical clusters are determined. Clustering approaches 

using more complex cluster prototypes than only the cluster centres, leading to adaptive distance 

measures, are for instance the Gustafson-Kessel (GK) algorithm, volume adaptation strategy and  

Gath-Geva (GG) algorithm [3,4,5,6]. The latter one is not a proper objective function algorithm, 

but corresponds to a fuzzified expectation maximization strategy. 

Applying the identification algorithm to a data set where the clusters are not well separated 

provides the comparative analysis of the hard and fuzzy DDAA clustering. The results of the first 

algorithm pass are shown in parallel for hard (figure 1) and fuzzy (figure 2) clustering both in 

Euclidean sense. In the first algorithm pass the hard clustering separates a cluster with highest 

density but which is a part of an enlarged cluster (figure 1.b). In that way the hard clustering 

splits the large cluster into two clusters. However, the enlarged cluster is recognised by the fuzzy 

DDAA algorithm (figure 2.b).  

figure 1 

figure 2 

We also examine an extreme data set that consists of clusters with different size, shape and 

density among many noise data. Fuzzy DDAA clustering (figure 3.b) can deal better with the 

complex problems than hard DDAA (figure 3.a) due to the given relative degree of membership 

of a point to the good cluster. The lower oblong cluster and lower left round cluster have equal 

density and are equally close to the currently defined centre of the good cluster. The hard 

clustering is ‘hesitating’ to choose one of the custers zigzagging between the cluster centres. It 

finds the good cluster as a highly density group within the oblong cluster, whereas the fuzzy 

clustering separates directly the round cluster.  

figure 3 



In another extreme data set, in which the oblong clusters have highest density, we explore 

the fuzzy DDAA clustering over Euclidean and GK distance measure. The main feature of the 

GK distance is its local adaptation to the shape of the cluster as the matrix Ai of (3) is different for 

each good cluster [4]. For our particular case of consideration, where only one good cluster is 

searched for, the equation (3) is still valid however the only one product space matrix A1 is 

calculated: 
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where the fuzzy covariance matrix F1 is: 
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The good cluster recognised in the first algorithm pass via Euclidean distance measure for 

50.µtol =  does not fully cover the real data cluster (figure 4.a). The GK variant for 50.µtol =  fits 

much better the cluster (figure 4.b). Best cluster identification is established by acceptance level 

20.µtol =  (figure 4.c). The decreased level of acceptance admits to select only those points that 

belong to the oblong cluster and thus, to cover the real cluster shape.   

figure 4 

 

5. Clustering of the glass identification data set 

In order to demonstrate the capability of our algorithm to deal with complex data sets, we 

apply it to cluster the Glass Identification Database [13]. The data set contains 214 objects that 

are examples of the chemical analysis of different types of glass. Each object is characterized by 

values for nine attributes: Refractive index (RI); Sodium (Na); Magnesium (Mg); Aluminium 

(Al); Silicon (Si); Potassium (Kalium) (K); Calcium (Ca); Barium (Ba); Iron (Fe). The problem is 



to forecast the type of glass on the basis of the chemical analysis. The study of classifying the 

types of glass was motivated by criminological investigations. At the scene of the crime, the glass 

left can be used as evidence. Although the glass data represents a supervised classification 

problem, it also suitable to study it in the context of unsupervised classification like cluster 

analysis. 

The data set, represented by a 214x9 matrix, has a quite complex and irregular structure for 

clustering purposes. For instance, the third, eighth and ninth attributes have zero values for large 

amount of data that substantially decreases the clustering abilities. 

A hard clustering variant of DDAA algorithm is applied to the normalized data set that 

forms a unit hyperbox with a diameter 319 2 =× . However, we choose smaller initial noise 

distance δ = 2 as there are no data assignment dynamics above this value. A cautious decrement 

∆δ = 0.005 and proper threshold value tol=30 are also set in advance. Two strong slopes that 

correspond to the two significant peaks are obtained in the first algorithm pass (figure 5). The 

single good cluster separated by this pass is defined at 1050)2(max .δδ == . It consists of 44 data 

points. The second good cluster of 155 data points is selected in the second algorithm pass (figure 

6) at 8250)1(max .δδ == . The left 15 data points are defined as noise data. These points are away 

from both clusters and thus they are not assigned to any of them. The centres of the two defined 

good clusters are presented in table1. In the same table the coordinates of the cluster centres 

obtained by subtractive clustering [14] are presented as well. It should be mentioned that the 

original data set consists of two main types of glasses: 51 non-window glass data and 163 

window glass data. The mean values of both groups are also given in the table 1. 

figure 5 

figure 6 



In case of reduced decrement value ∆δ = 0.002 and threshold tol=5 more clusters are 

identified. They correspond to the sixth different types of glasses presented in the database. The 

cluster centres of this partition are given in table 2. 

Table 1 

Table 2 

 

6. Comparison analysis 

The main difference between our algorithm and other well known objective function 

clustering methods lies in the strategy of searching for good clusters. Most of the algorithms seek 

for all clusters at once are based on validity measures to assess the quality of the partition. They 

depend on the algorithm initialisation. The algorithms will usually converge to a local minimizer, 

which hopefully corresponds to the good clusters [1,8,12,15,16]. 

Another clustering approach is based on the evolving, distance-based partitioning method 

[14,17,18]. One of the quite frequently applied clustering methods in the last decade is the 

subtractive clustering proposed by Chiu [14]. 

The subtractive clustering method is an improved form of the mountain clustering method 

introduced by Yager and Filev [17]. In subtractive clustering each data point is considered as a 

possible cluster centre according to the estimated potential of that point. A data point with many 

neighbouring data points will have a high potential value. The data with the highest potential 

value is chosen as the first cluster centre. The key idea is that once the cluster centre is chosen the 

potential of each data point is revised according to its distance from the currently selected centre. 

Four clustering parameters need to be properly adjusted in advance in order to obtain a reliable 

data partition - cluster radius, squash factor, accepting and rejecting rate. Although the preferable 

values of the clustering parameters are mentioned in [14], experience shows that they should be 



fine tuned according to the particular data set.  

In contrast to subtractive clustering the adjusted parameters of our algorithm are only two. 

The more significant parameter is the decrement value ∆δ that specifies the reduction rate of the 

noise distance. The second parameter is the threshold tol that determines the number of points 

above which a defined peak is selected as a significant one. 

An important advantage of DDAA algorithm is the opportunity to visualise the dynamics of 

the accepted data points to the good cluster. Both curves – the accepted rate and its velocity, 

could be plotted independently of the data dimensionality. One can easily adjust the proper 

threshold value tol simply by looking at the significant steepness of the slopes. In this sense, we 

do not claim that DDAA algorithm performs better than others, but its few control parameters can 

be handled in a very intuitive way. 

The key of subtractive and DDAA clustering methods is that they do not involve any 

iterative optimization and thus, the computation grows only linearly with the dimension of the 

problem (number of data as well as attributes).  

It should be mentioned that DDAA algorithm incorporates relatively simple mathematical 

formulae. We are also free in the choice of the cluster prototype for the single cluster to be 

identified. We can also use more complicated prototypes for more flexible cluster shapes as they 

are very often found in objective function based clustering. 

 

7. Conclusions 

The cluster identification method presented here is based on the assessment of the 

dynamics of the number of points that are assigned to only one cluster through noise clustering of 

the data set by slightly changing the noise distance from a reasonable large to a sufficiently small 



value. Two algorithm variants – hard and fuzzy, are presented. They are studied through the 

comparative analysis over different feature spaces by exploring different distance measures.  

The proposed algorithm enables us to identify one good cluster at a time that has a specific 

data structure with variable shape in one pass of the algorithm and also to identify noise data. 

Further on, we can proceed with the same clustering procedure but with a reduced data set as the 

data belonging to the already identified cluster are subtracted from the entire data set. Thus, we 

can discover single interesting clusters, even if the majority of the data does not form any kind of 

cluster structures. 

The method can be applied as a stand-alone clustering algorithm as it estimates the number 

of clusters and the clusters’ mean values. However, it is also appropriate for initialising more 

sophisticated clustering algorithm as K-means or its fuzzy variants as FCM, GK and GG.  

 

Acknowledgement: This work was partly supported by the German Research Society (DFG), 

under Grant 436 BUL 112/2/04. 

 

References 

1. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms Plenum Press, 
New York, 1981. 

2. Bezdek, J.C., “A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms”, 
IEEE Trans. Pattern Analysis and Machine Intelligence, 2(1), 1-8, 1980. 

3. Gath, I., A.B. Geva, “Unsupervised optimal fuzzy clustering”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, v.7, pp. 773-781, 1989. 

4. Gustafson, D., W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, Advances in fuzzy 
set theory and applications, North-Holland, 1979, 605-620.  

5. Hoeppner, F., F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis, John Wiley & 
Sons, Chichester, 1999.  

6. Keller A., F. Klawonn, Adaptation of cluster sizes in objective function based fuzzy 
clustering, in: C.T. Leondes (ed.): Intelligent Systems: Technology and Applications vol. IV: 
Database and Learning Systems. CRC Press, Boca Raton, 2003, 181-199. 

7. Dave, R. H., “Characterization and detection of noise in clustering”, Pattern Recognition 
Letters 12, 657-664, 1991.  



8. Dave, R. H., R. Krishnapuram, “Robust clustering methods: A unified view”, IEEE Trans. 
Fuzzy Systems, vol. 5, 1997, 270-293.  

10. Georgieva O., F. Klawonn, A clustering algorithm for identification of single clusters in 
large data sets, in Proc. East West Fuzzy Colloquium, Sept. 8-10, Zittau, Germany, Heft 81, 
2004, 118-12. 

11. Georgieva O., F. Klawonn, Dynamic data assigning assessment clustering via different 
distance metrics, Automatics and Informatics’05, Oct.3-5, Sofia, Bulgaria, 2005, 175-178.  

12. Babuska, Fuzzy Modeling for Control, Kluwer Academic Publishers, Boston, USA, 1998. 
13. Glass database, ftp://ftp.ics.uci.edu/pub/machine-learning-databases/glass/. 
14. Chiu S.L., “Fuzzy model identification based on cluster estimation,” Journal of Intelligent 

and Fuzzy Systems, vol. 2, 1994, 267-278. 
15. Jolion J.-M., P. Meer, and S. Bataouche, “Robust clustering with applications in computer 

vision,“ IEEE Trans. Pattern Anal. Machine Intell., vol. 13, Aug. 1991, 791–802. 
16. Stewart C. V. , “MINPRAN: A new robust estimator for computer vision,” IEEE Trans. 

Pattern Anal. Machine Intell., vol. 17, no. 10, Oct. 1995, 925–938. 
17. Yager R., D. Filev, Essentials of Fuzzy Modeling and Control, John Wiley & Sons, 1994.  
18. Song Q., N. Kasabov, “Dynamic Evolving NeuroFuzzy Inference System (DENFIS): On-line 

Learning and Application for Time-Series Prediction,” in Proceedings of the 6 th 
International Conference on Soft Computing , 2000, Iizuka, Japan. 

 
 
 
 

5 10 15
0

50

100

150

200

0 5 10 15
0

5

10

15

20

N in

∆N in

δ

δ0

250

 
0 5 10 15

0

5

10

15

x1

x2

 

a) Data assignment dynamics of  b) The last defined cluster (+) and the trace 
of the first algorithm pass. the cluster centre (∗). 

Figure 1. Hard DDAA clustering, 30=tol . 
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a) Data assignment dynamics of  b) Defined cluster (+) in the first algorithm pass 
 the first algorithm pass. and the trace of the cluster centre (∗). 

Figure 2. Fuzzy DDAA clustering, tol=30, tolµ  = 0.5. 
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a) hard DDAA clustering  b) fuzzy DDAA clustering, tolµ  = 0.5 

Figure 3. Selected cluster (+) and the trace (∗) of the cluster centre,  tol=10 of the first algorithm 
pass. 
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a) via Euclidean distance measure, tolµ  = 0.5.  b) via GK distance measure, tolµ =0.5. 
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b) via GK distance measure, tolµ  = 0.2 

Figure 4. Selected cluster (+) and the trace  (∗) of the cluster centre, 30=tol of the first algorithm 
pass. 
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Figure 5.  Data dynamics of the first DDAA algorithm pass applied to Glass database 
 
 



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

δ a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

0

2

4

6

b)

Nin

∆Nin

δ 

8

200

 
 
Figure 6.  Data dynamics of the second DDAA algorithm pass applied to Glass database 
 
 
Table 1. Cluster centres calculated by different partition techniques 
 c RI Na Mg Al Si K Ca Ba Fe 

1 1.5170   13.0448    3.5311 1.3336 72.9507    0.5789   8.3561   0 0 

O
ur

 
al

go
rit

hm
 

2 1.5185 13.5538    2.6763   1.4512 72.6190    0.3882   8.9621   0.1760 0.0692 

1 1.5178 13.0800 3.4900 1.2800 72.8600 0.6000 8.4900 0 0 

Su
bt

ra
ct

iv
e 

cl
us

te
rin

g 

2 1.5166 12.8500 3.5100 1.4400 73.0100 0.6800 8.2300 0.0600 0.2500 

1 1.5186   13.2017    3.2949   1.2817   72.5869    0.4775   8.9247 0.0298   0.0676 

M
ea

n 
of

 
th

e 
tw

o 
da

ta
 ty

pe
s 

2  1.5176   14.0667    0.7337   1.9667   72.8555    0.5596   9.0602 0.6392   0.0231 

 
 
 
Table 2. Cluster centres of selected clusters by hard DDAA algorithm  

RI              Na              Mg           Al              Si            K            Ca          Ba            Fe 
1.5171    13.0147      3.5284      1.3142      72.9318   0.5818    8.4150     0             0 
1.5174    13.2789      3.5237      1.4371      72.6908   0.5592    8.2963     0.0037    0.0042 
1.5183    13.1161      3.4725      1.2935      72.7067   0.5071    8.6998     0.0120    0.1512 
1.5166    14.6833      0               2.0875      73.2383   0.0117    8.6267     1.2833    0.0133 
1.5204    13.7824      2.7489      1.2305      72.1392   0.2211    9.6932     0.0465    0.0227 
1.5195    13.6330      0.3193      1.7926      72.9663   0.4170   10.2152    0.5185    0.0352 

 
 


