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1 Introduction

The complete sequence of bacterial genomes provides new perspectives for
the study of gene expression and gene function. DNA array experiments al-
low measuring the expression levels for all genes of an organism in a single
hybridization experiment.

Computational analysis of the macroarray data is used extensively to ex-
tract groups of similarly expressed genes. The aim is to organize DNA array
data so that the underlying structures can be recognized and explored. The
gene groups identified as clusters are searched for genes known to be involved
in similar biological processes, implying that genes of unknown functions may
be involved in the same processes. Commonly used computational techniques
include hierarchical clustering, K-means clustering and self-organizing maps.
These share many features, particularly the distance metric, which measures
the relationship between samples or genes in the data space formed by the
expression values. The output from different clustering algorithms usually de-
pends more on the type of distance metric used than on any other factor.

The central limitation of most of the commonly used algorithms is that
they are unable to identify genes whose expression is similar to multiple, dis-
tinct gene groups, thereby masking the relationships between genes that are
coregulated with different groups of genes in response to different conditions.
For example, the K-means clustering partitions genes into a defined set of dis-
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crete clusters, attempting to maximize the expression similarity of the genes
in each cluster assigning each gene to only one cluster, obscuring the relation-
ship between the conditionally coregulated genes. The recently implemented
heuristic variant of Fuzzy C-Means (FCM) clustering [4] shows the advantage
of the fuzzy clustering technique as a valuable tool for gene expression analysis
as it presents overlapping clusters, pointing to distinct features of each gene’s
function and regulation.

The paper presents a methodology to deal with macroarray data analysis.
Each step of the data processing is described in detail. First, the crucial pre-
processing step on the raw data to transform the data set into an appropriate
and reliable form for clustering is applied. Secondly, subtractive clustering is
implemented in order to obtain a good initial data partition. The obtained
cluster centres are used to initialize the fuzzy C-means clustering algorithm
by which the optimal values of the cluster centres and partition matrix are
obtained. The partition matrix is used to determine the gene groups that be-
long to a given cluster with a prescribed membership degree. The proposed
procedure is applied to macroarray data of B. subtilis. The obtained results
show that informative clusters are obtained. The extracted gene clusters are
overlapping, pointing to distinct aspects of the gene function and regulation.

2 Data set

Here we used data obtained from the soil bacterium B. subtilis grown under
different growth conditions. B. subtilis is able to grow in the absence of oxygen
using nitrate as alternative electron acceptor or fermentation processes. The
switch between aerobic and anaerobic metabolism in B. subtilis is regulated
mainly at the transcriptional level. To investigate the global changes in gene
expression under various anaerobic conditions we used DNA macroarrays con-
taining DNA fragments of all 4107 genes of B. subtilis. We analysed mRNA
from cells grown aerobic, anaerobic with nitrate, anaerobic with nitrite and
under fermentative conditions. When the mRNA levels were compared during
exponential growth, several hundred genes were observed to be induced or
repressed under the various conditions tested. The data of the macroarrays
are obtained by autoradiography using phosphorimaging and the intensities
representing the expression levels are transformed into a table. In the ob-
tained numerical table each row corresponds to a gene and each column to
one growth condition analyzed.

The considered macroarray data set is a data matrix that consists of the
expression levels (ratios) of 4107 genes of B. subtilis defining each matrix
raw. The cells have been carried out on four different environment condition
namely aerobic (A), fermentative (B), nitrite (C) and nitrate (D). The inten-
sities obtained in each experiment are organized in the columns. The ratio
in each environment condition has been measured twice. Thus, the original
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macroarray matrix Z = (zx;) (k=1,...,N,j=1,...,n) is a large sized data
matrix with N = 4107 rows and n = 8 columns.

Two distinct data sets of the type described above have been obtained in
different time instants. The first data set, named identification data set, was
used for data partition and determination of the searched gene groups. The
second one, named the validation data set, was used only for verification of
the obtained clusters.

3 Fuzzy clustering of B. subtilis macroarray data

In order to identify the gene clusters and simultaneously to evaluate the level
of relationships of genes that are coregulated with different groups, the Fuzzy
C-Means clustering technique [2, 5] is applied. It is an objective function-based
clustering method. It aims at minimizing an objective function that indicates
a kind of fitting error of the clusters to the data. The underlying objective
function for most of the clustering algorithms is:

7= Y Y 1

where N is the number of data points; ¢ is the number of clusters; u;; and d;i
denote the membership degree and the distance of the point zy, k =1,..., N,
to the i-th cluster prototype (centre), i = 1,...,¢, respectively, m € [1,00)
is the weighted exponent coefficient (fuzzifier) which determines how much
clusters may overlap. In order to avoid the trivial solution assigning no data
to any cluster, i.e. setting all u;;, to zero, and to avoid empty clusters, the
constraints

Uzke[ovl]a IS’LSC, ISkSN (2)
ZuikZL 1<k<N (3)
i=1
N
0< > ui <N, 1<i<e (4)
k=1

are introduced. When the fuzzifier value m = 1 is chosen, then u;;, € {0,1} will
hold at a minimum of the objective function (1), i.e. the resulting partition
will be crisp.

The parameters to be optimized are the membership degrees u;; and the
cluster parameters which finally determine the distance values d;;. In the
simplest case, a single vector named cluster centre represents each cluster v;.
For FCM clustering the distance of a data point to a cluster is simply the
Euclidean distance between the cluster centre v; and the corresponding data
point:



4 Olga Georgieva, Frank Klawonn, and Elizabeth Hartig

Ay =llap—vi P = (zr — ) (2 — vy), (5)
where z = [Zg1,...,Zkn] is the k-th data point defined as a vector in the
feature space and v; = [x;1, ..., %] is the i-th cluster prototype vector.

The minimization of the functional (1) represents a nonlinear optimization
problem that is usually solved by means of Lagrange multipliers, applying an
alternating optimization scheme [2]. This optimization scheme alternatively
considers one of the parameter sets, either the membership degrees or the
cluster parameters as fixed, while the other parameter set is optimized, until
the algorithm finally converges.

The main problem of the macroarray data clustering is the badly struc-
tured data space that lacks well separated (distinguished) data groups. Most
of the points are found to be located in one small area close to the zero value.
Thus, two important problems arise in applying the FCM clustering algo-
rithm. The first one arises from the specific characteristics of the data set
mentioned above. The data set should be presented in an appropriate form in
order to guarantee the reliability and authenticity of the extracted informa-
tion. The second problem concerns the initialization of the FCM algorithm. In
the objective function (1), the number of clusters has to be fixed in advance.
Since the number of clusters is usually unknown, an additional scheme has
to be applied to determine the number of clusters and their prototypes. Both
problems are considered in detail and an effective solution for the macroarray
data set is described.

3.1 Preprocessing step

The preprocessing step is a preliminary step of the whole data processing
(clustering) which aimed to transform the data set into an appropriate and
reliable form for clustering. In most situations, the data obtained after scan-
ning must be transformed and normalized before they can be analyzed. By
applying several operations on the identification data set the data represen-
tation is improved and the quality of the clustering is increased.

One main problem of the macroarray data processing is connected to the
data noise. Differences occurred quite frequently in the repeated measure-
ments of the same gene under the same conditions. For this, an average value
of the gene expression within every environment condition is determined. In
case one of the expressions is zero or invisible (no measured value is provided)
the other one is taken into account. Thus, in the considered particular case
the data matrix is transformed from an eight to a four column matrix. This
in practice means that the clusters will be searched for in a four-dimensional
data space.

Since empirical evidence shows that low-intensity spots (low gene expres-
sion measurements) are more likely to be noisy, eliminating those spots is a
fairly safe option [6]. However, as the most of the data values are close to
the zero value it is rather difficult to distinguish the noisy values from the
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informative ones. That is why only genes that have one or more zero average
expression value are taken out from the data set. Eleven genes having a zero
average value and by that three of them at two environment conditions were
defined and removed from the considered data set.

The second specificity of the illuminated macroarray matrix is that there
are so bright spots that some of the surrounding ones could not be distin-
guished. Their expression levels can not be measured and they are considered
as invisible. Genes that have at least one invisible average expression should
also be removed from the data set. However, in the particular case under
consideration it two invisible expressions for one gene in one condition never
occurred.

The upper extreme of the filtered group consists of genes that have large
expression that differ drastically from the rest of the data. Normally, they
form a small group that is far away from the other data in the data space. In
this situation every clustering algorithm will separate both the large and small
group of outliers, but this partition will be not informative as the important
clusters are within the large amount and narrow spread data points. Genes
that have an average expression of over 100 are taken out from the data
set. Both cutting values for lower and upper data filtering are subjectively
determined. They are subject to an expert choice depending on the concrete
data configuration.

The results in many DNA macroarray experiments are ratios. The fact
that the output is not symmetric, i.e. twofold change has a ratio of either
2 (up-regulation) or 0.5 (down- regulation), presents a problem for analysis
because most distance metrics treat a ratio change differently depending on
the direction. Thus, it is essential to convert ratio data into a form that is
not sensitive to the direction of the change. The solution of this problem
usually applied is a log transform of all ratio values [6]. Here, the natural
logarithm was applied but all logarithm bases are equivalent for this task.
By this transformation the high ratios are compressed while the small ratios
increase their importance by stretching their distances. This effect is very
beneficial as it increases the distinguishability among the data due to the fact
that the largest amount of expression ratios lies between zero and one.

Generally, the expression ratios are obtained by a comparison to a com-
mon reference sample. For each gene the series of ratio values are relative to
the expression level of that gene in the reference sample. Thus, in case the
uncentred correlation matrix is used, two genes whose expression patterns
are identical to each across a range of samples, but different in the reference
sample, will not cluster together. Since the reference sample has nothing to
do with the experiment, the expression levels should be transformed to be
independent from the reference sample. This problem can be solved by sub-
tracting the average (mean) or median log ratio for a gene from the log value
for each value for that gene. Median centring the data for columns and rows is
applied consequently ten times to the processed identification data set. This
transformation removes certain types of biases.
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The applied FCM clustering method uses the Euclidean distance metric,
which imposes data normalization before clustering in order to ensure reliable
clustering results.

Average within every envirmnment conditian

Filtered data

Fig. 1. Data transformations: averaging, filtering, log transform, median centred
data

These operations are not associative, so the order in which they are applied
is very important. The series of operations for the raw data are:

1. Average of the expression values within every environment condition

ZNx8 = LNx4;

2. Filtering by removing:  zx; > 100  (to high expression)
zpi =0 (no expression)
zri = —1 (invisible expression)

3. Log transform all values: log(Zn,x4) = (logzki), k = 1,...,Ny, i =
1,...,4, where N; is the revised number of the genes in the data set;

4. Median centring through data columns and rows consequently ten times;
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5. Normalization of the data.

Figure 1 shows the data transformations carried out by the described pro-
cedure in the three (A-B-C) dimensional data space.

The data preprocessing does not change the structure of the data set. It
only makes it more reliable and informative for the applied clustering algo-
rithm.

3.2 Initialization of the clustering algorithm

The number of clusters and the initial partition matrix should be provided in
advance for all objective function-based clustering algorithms. Since, by the
clustering optimization scheme usually a local minimum is found, the provided
initialization parameters are of a major importance, especially in the case of
extreme large data set. An effective solution can be achieved only, if the correct
number of clusters and a suitable initial data partition are defined.

The main drawback of the fuzzy clustering algorithm is the lack of an
initialization procedure. There is no reliable technique for determining the
number of clusters and an initial data partition. In the standard objective
function-based clustering additional strategies have to be applied in order to
define the number of clusters. There are two commonly applied strategies.
Through the first one the clustering is carried out with different numbers
of clusters and the partition is evaluated by some global validity measure
like average within-cluster distance, fuzzy hypervolume or average partition
density [5, 1]:

1. Average within-cluster distance (AWCD)

AWCD = Z Zk 1 ’u‘zkdzk’ (6)
=1 Zk 1uzk

This measure monotonically decreases with the number of clusters c. A
”knee” in the graph will indicate a suitable partition.

2. Fuzzy hypervolume (Vh)

w

Z[det 2, (7)

where F;, 7 =1,..., ¢, are the cluster covariance matrices. Good partitions
are indicated by small values of Vh.

3. Average partition density (APD)
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where S; is the sum of the membership degrees of the data vectors that
lie within a hyperellipsoid whose radius is the standard deviation of the
cluster features:

N
S; = Zu““ for every k, such that (zp — vi)Fifl(zk — vi)T <1. (9
k=1

Good partitions are indicated by large values of APD.

The clustering procedure is started several times for a given number of
clusters and a randomly set partition matrix. The procedure is repeated for
different numbers of clusters, varying from a sufficiently small to a sufficiently
large amount. Best initial values are those that optimize the chosen cluster
validity measures. Normally more then one cluster validity measure should
be incorporated. Another strategy is based on compatible cluster merging [1]
that starts with a high number of clusters and then deletes bad clusters as
well as merges similar clusters together step by step. Both strategies require
high computational costs.

In this paper another strategy for a good initialization of the objective
function clustering has been applied. A subtractive clustering algorithm [3] is
used to partition the identification data set. This algorithm determines the
number of clusters and estimates their cluster centres. Then the cluster cen-
tres are used as a good initialization for the FCM clustering. As a result by
the FCM the optimal cluster centres’ coordinates and the partition matrix are
obtained. The partition matrix is very useful as its elements are the member-
ship degrees indicating how much each gene belongs to each cluster. So, one
obtains not only a partition, but the intensity of the gene’s partition. Thus,
by defining some cutting level, it is easy to determine groups of those genes
that belong to the clusters with desired level of membership.

There are four important parameters of the subtractive clustering algo-
rithm that are responsible for the data partition. The cluster radius r, is a
vector that specifies a cluster centre’s range of influence in each data dimen-
sion, assuming the data lie within the unit hyperbox. However, after the pre-
processing step the transformed data set is fit to assuming spherical clusters,
i.e. data points are bounded by a hypercube. Thus, we use the same cluster
radius for all data space dimensions. A squash factor s, is used to multiply
the r, value to determine the neighbourhood of a cluster centre within which
the existence of other cluster centres are to be discouraged. The accept ratio
€, sets the potential, as a fraction of the potential of the first cluster centre,
above which another data point will be accepted as a cluster centre. The reject
ratio €, sets the potential, as a fraction of the potential of the first cluster
centre, below which a data point will be rejected as a cluster centre. As the
first two parameters are more decisive to the clustering results, they are varied
to obtain a good initial partition in terms of the cluster measures AWCD, Vh
and APD. The remaining two factors are set to a constant value ¢, = 0.5
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and e, = 0.15 as it is prescribed in the originally proposed algorithm [3]. The
calculated cluster measures by varying first the cluster radii and constantly
maintaining the squash factor and after that varying the squash factor while
cluster radii have been set to a constant value, are presented in Figure 2. It
is difficult to define exactly the best values for r, and s, in terms of these
cluster measures as there are discrepancies. We can only define an appropri-
ate interval where the best partition is realized. The influential point of both
curves in the top of Figure 2 is defined in the interval for ¢ € [20,40]. In the
same interval for the corresponding r, and s, values a local minimum can be
found in the curves for Vh and APD, respectively. As a reasonable compro-
mise between the optimal values of the cluster measures and a good initial
solution for FCM clustering the data partition is chosen that is obtained by
the subtractive clustering with parameters r, = 0.05 and s, = 1.

Fig. 2. Cluster measures: -o- r, varies and s, = 1; -x- r, = 0.05 and s, varies.

4 Results and discussion

By the procedure described above 27 clusters and their cluster centres are
identified. They are used to calculate the initial partition matrix by applying
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the membership calculation formula of the FCM algorithm. By running the
FCM algorithm 27 fuzzy clusters are identified such that genes having similar
profiles are assigned to a cluster with highest membership degrees. The degree
of membership of each gene to each cluster is given in the partition matrix.
It is used to determine the clusters by cutting the membership degrees on a
desired level.

Cutting level of the membership degree [0.6]0.5/0.4| 0.3 | 0.2 | 0.1
Number of all clustered genes 274|447|720(1180|2361|6589

Table 1. Number of clustered genes for different membership level cut

The obtained results show that informative clusters are obtained. The
extracted gene clusters are overlapping, which enables us to reveal distinct
aspects of the gene function and regulation (Table 1). The number of the
clustered genes for the 0.1 cutting level is rather bigger then the number
of the clustered genes. This means that a large overlapping of the obtained
clusters occurs. By increasing the cutting level the number of the clustered
genes decreases.

Gene expression Identification data set
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Fig. 3. Profiles of genes (given by numbers) belonging to cluster no. 17

Some typical gene clusters are presented in Figures 3-5. The expression
profiles belong to genes that are assigned to the given cluster with a member-
ship degree greater than 0.5 (upper curves in the figures). In order to verify
the obtained partition the verification data set is also used. The expression
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profiles of the genes belonging to this cluster but extracted from the verifi-
cation data set are shown in the bottom of the figures. The gene expression
is changed during the time. This means that it could be expected that the
profiles in both data sets could be different. The fact that the extracted genes
from the identification data set are still a group with similar profiles in the
verification data set proofs the reliability of the obtained partition.

Gene expression Identification data set
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Fig. 4. Profiles of genes (given by numbers) belonging to cluster no. 26

Cluster 17, 26 shows the typical expression pattern: A - low, B - high, C -
low and D - high and a lot of genes known to be important for anaerobic life are
represented in this cluster. The genes of this cluster are almost not expressed
under the A and C conditions (aerobic and anaerobic with nitrate) whereas
under the conditions B and D (fermentative and anaerobic with nitrite) the
expression of the genes is induced. This expression pattern shows that the
condition A and B are more similar to each other than the anaerobic conditions
C and D. Under condition A and B the electron transport chain is needed and
different electron endacceptors are used: Oxygen in the case of condition A
and nitrate at condition B.

Also in cluster 17 we found a lot of genes with unknown functions. Since
the expression pattern is similar, we may postulate that they are also needed
for anaerobic adaptation. This has to be analyzed in further experiments.

The opposite expression pattern is visible in cluster 19 (A - high, B -
low, C - high, D - low), indicating that now genes are expressed that are
mainly needed for conditions A and C. Here we found a lot of genes encoding
ribosomal proteins.
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Gene expression
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Fig. 5. Profiles of genes (given by numbers) belonging to cluster no. 19

5 Conclusions

In this paper, we have demonstrated how fuzzy clustering can be applied to
the analysis of DNA array data using B. subtilis as an example. Since the
raw data are not suitable for clustering, especially since they contain a high
proportion of noise, appropriate transformations have to applied to the data in
a preprocessing step. Furthermore, we used a subtractive clustering strategy to
determine the number of clusters and to find a good initialization for the fuzzy
clustering step. We have used two data sets that were generated independently,
but under the same conditions. We have carried out the cluster analysis only
in the first data set, whereas the second data set served for verification of the
clusters. Assigning the data from the verification set to the clusters derived
from the first data set has shown that the clusters group genes together with
similar expression characteristics despite the inherent noise.

Taking a closer look at the clusters, we could verify some known correla-
tions between gene expression as well as find some new interesting groups of
genes with unknown function which show a similar expression pattern. This
might provide some further hints to their function which has to be analysed
in further biological experiments.

References

1. R. Babuska. Fuzzy Modeling for Control. Kluwer Academic Publishers, Boston,
1998.

2. J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, 1981.



Fuzzy Clustering of Macroarray Data 13

. S.L. Chiu. Fuzzy model identification based on cluster estimation. Journal of
Intelligent and Fuzzy Systems, 2:267-278, 1994.

. M.B. Gasch, A.P.and Eisen. Exploring the conditional coregulation of yeast gene
expression through fuzzy k-means clustering. Genome Biology, 3(11):1-22, 2002.
. F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis.
Wiley, Chichester, 1999.

. P.T. Spellman. Cluster analysis and display. In D. Bowtell and J. Sambrook,
editors, DNA Microarrays, pages 569-581. Cold Spring Harbor Laboratory, Cold
Spring Harbor, 2002.



