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1. Introduction 

Although the original intention of cluster analysis is to partition a data set into 

“meaningful” substructures, clustering is often applied for other purposes. For instance, when 

fuzzy cluster analysis is applied in the context of generating fuzzy rules from data, it is very often 

used as a segmentation technique that simply partitions the data (in a fuzzy way), without putting 

a strong emphasis on well distinguished clusters. In other applications, like for example analysing 

gene expression data or astrophysics data, it is not necessary to partition the data into meaningful 

clusters, but to identify one or a few interesting clusters that might only cover a small portion of 

the data.  

Following the idea to search for just one cluster at a time a prototype-based clustering 

algorithm named Dynamic Data Assigning Assessment (DDAA) was recently proposed [8,9]. It 

is based on the Noise clustering technique and finds single good clusters one by one and at the 

same time it separates the noise data. Two algorithm versions – hard and fuzzy clustering, are 

realizable according to the applied distance metric. The method can be used for two purposes: 

either in the sense of standard cluster analysis to determine the number of clusters automatically 

or in order to identify one or a few clusters that might cover only a portion of the data set.  

The above mentioned algorithm properties were used in order to develop an extended 



DDAA algorithm that is capable to separate a new data stream added to the data set. The evolving 

DDAA algorithm assigns every new data point to an already determined good cluster or 

alternatively to the noise cluster. By that it checks whether the new data collection provides a 

new good cluster(s) and thus changes the data structure. The assignment could be done in hard or 

fuzzy sense.       

The paper is organised as follows. The second section briefly reviews the necessary 

background on objective function-based clustering, the concept of noise clustering that we exploit 

in our approach and the underlying idea of the DDAA algorithm itself. The evolving version of 

the algorithm is presented in detail in Section 4. Some conclusions are given in the fifth section. 

 

2. Basic concepts and DDAA algorithm 

Objective function-based clustering aims at minimizing an objective function J that 

indicates a kind of fitting error of the clusters to the data. In this function, the number of clusters 

has to be fixed in advance. The underlying objective function for most of the clustering 

algorithms is [1]: 
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where N is the number of data points; c is the number of clusters; uik and dik denote 

correspondingly the membership degree and the distance of the k-th point 

][ 21 knkkk x,...,x,xx = , k = 1, ..., N, to the i-th cluster prototype, i = 1, ..., c; m∈[1,∞) is the 

weighted exponent coefficient which determines how much clusters may overlap. In order to 

avoid the trivial solution assigning no data to any cluster, i.e. setting all uik to zero, and to avoid 

empty clusters, the following constraints are introduced: 
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When we choose the fuzzifier m=1 we have }10{ ,uik ∈  at a minimum of the objective 

function (1) and the resulting partition will be crisp. 



 The parameters to be optimized are the membership degrees uik and the cluster parameters 

which finally determine the distance values dik. Each cluster is represented by a cluster prototype. 

In the simplest case, the cluster prototype is a single vector called cluster centre ][ 21 iniii v,...,v,vv = , 

c,...,i 1= . The distance of a data point k  to the i-th cluster is defined by a positive definite 

symmetric matrix Ai and the cluster centre as follows: 
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The matrix Ai is defined differently according to the applied objective-function based 

clustering algorithm [1,2,3,4,5]. 

The arbitrary noise points that do not belong to any comprehensible class have to be taken 

into account. The successful solution to deal with the noise in the data set is to collect the noise 

points in one single cluster [7]. For this purpose a virtual noise prototype with no parameters to 

be adjusted is introduced that has always the same (large) distance δ to all points in the data set. 

Let cluster number c be the noise cluster. Then, by definition we have 

dck = δ ,  ∀ k. (4) 

The remaining c-1 clusters are assumed to be the good clusters in the data set. The objective 

function Jnoise that considers the noise cluster is defined in the same manner as in the general 

scheme for the clustering minimization functional (1) i.e. JJ noise ≡ , but with some additional 

specifications. The distances of every point N,...,k,xk 1=  are defined by (3) for all clusters 

11 −= c,...,i,i and by 
22 δdck =  for ci = . (5) 

The objective function Jnoise has the global minimum for a fixed noise distance δ  only if: 

a) for hard noise clustering (i.e. 1=m ) the membership degrees are: 

  0=iku for ∀ ji ≠  and  (6) 

  1=jku for j  such that ) 1min( c,...,i,dd ikjk == . 

b) for fuzzy noise clustering ( 1>m ) the membership degrees are 
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and the cluster centres of the good clusters are defined by the weighted mean value: 
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The specification of the noise distance δ is a matter of consideration for the particular data 

set. If δ is chosen too small, then most of the data points will be classified as noise, while for a 

large δ value even outliers will be assigned to good clusters. 

Let us assume that the data set consists of only one good cluster among a certain number of 

noise data considered as a noise cluster. Thus, the two clusters could be separated in minimizing 

the objective function Jnoise, which is simplified for the case c=2 to the following form:  
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The distance kd  denotes the distance between every point kx  and the centre 1v  of the single 

good cluster. The membership degrees are calculated for a fixed δ :  

a) for hard noise clustering as 

  11 =ku and   02 =ku if the k -th point belongs to the good cluster, i.e. kd ≤ δ  and  (10) 

  01 =ku and   12 =ku if the k -th point belongs to the noise cluster, i.e. kd > δ . (11) 

b) for fuzzy noise clustering the membership degree to the good cluster is defined as  
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and the membership degree to the noise cluster is correspondingly defined as: 
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Since we are still in the framework of probabilistic clustering the following statement is 

valid to both clustering variants: 

kk uu 21 1 −= ,  N,...,k 1= . (14) 

The proposed method separates one cluster at a time based on the concept of noise 

clustering via dynamical decrease of the noise distance. Thus, by this approach, it is not necessary 

to seek for a proper noise distance. 

The procedure starts by choosing a large noise distance, for instance the diameter of the 



data set, so that all data points are assigned to the good cluster and no data are considered as 

noise. Then, decreasing the noise distance stepwise by a prescribed decrement δ∆ , for each 

jδδ =  value we can determine the number )( jNin  of data belonging to the good cluster according 

to the membership degrees (crisp or fuzzy) to the good cluster. The index j denotes the current 

step of the noise distance reduction. At every noise distance jδ  the distance dk, N,...,k 1=  is 

calculated by (3). If the distance is less or equal to jδ  the current point xk is assigned to the good 

cluster, if not – the point is separated to the noise cluster. It is obvious that by decreasing the 

distance δ  a process of ‘loosing’ data, i.e. assigning them to the noise cluster will begin. 

Continuing to decrease the noise distance, we will start to separate points from the good cluster 

and add them to the noise cluster until the good cluster will be entirely empty as all data will be 

assigned to the noise cluster.  

The described dynamics of moving data from the good cluster to the noise cluster can be 

characterized by a curve showing the number of data points assigned to the good cluster over the 

varying noise distance. The velocity )( jNin∆  via the noise distance alteration is also evaluated:  

.jNjNjN ininin )()1()( −−=∆  (15) 

Note that not the time is used for the δ -axis so these curves must be viewed from right to left, 

when we want to observe the behaviour over time. 

It is clear that if we loose actual noise points (i.e. from a region of low data density) the 

curve will almost remain in a plateau, whereas a strong slope should be observed when data from 

an actual cluster (with higher density than the noise data) are moved to the noise cluster. In the 

general case of a complex data set, we will have a number of plateaus and a number of strong 

slopes in the curve.  

The peaks obtained from the curve inN∆ correspond to the slopes in the inN  curve. The 

area of every peak is proportional to the number of points that are separated to the noise cluster 

within the current slope. Only significant peaks, whose area is larger than a predefined threshold 

tol are of a real concern: 

toljNsS
sδδsδ:j j

>∆= ∑
≤≤ )()(

in
maxmin

)()( . (16) 

The last significant peak (the left-most one in )(in jN∆ curve) occurs when the data points of 

the last data group are moved to the noise cluster. These data define a cluster that we remove 

from the whole data set. The other significant peaks also correspond to phases where at least one 



comprehensible cluster is shifted to the noise cluster. The data of the none significant peaks i.e. of 

the (non-)plateau phases should be considered as noise data. The whole procedure is applied 

again to the reduced data set and repeated until no more significant peaks are identified. 

The algorithm can also be applied in the context of fuzzy noise clustering if the 

membership degree is calculated by (12). A data point is assumed to belong to the good cluster if 

its membership degree is bigger than a predefined value tolµ . However, being stricter in the 

identification of proper clusters the prescribed membership value should be increased and for a 

more tolerant identification, it should be decreased.  

The Dynamic Data Assigning Assessment cluster identification algorithm is summarazed as 

follows: 

Step 1: Specify the decrement step δ∆ and threshold tol. If fuzzy DDAA clustering is 

applied specify tolµ . 

Step 2. Compute the curves Nin and ∆Nin decreasing δ by the prescribed decrement δ∆ . 

Step 3: Find all peaks of ∆Nin curve and select the significant peaks. 

Step 4: Separate one good cluster determined by the last significant peak. 

Step 5: Subtract the separated points from the data set and repeat the procedure from Step 2 

for the remaining data points until no significant peaks could be found. 

 

As in most clustering algorithms we normalize the data set in advance in order to let each 

feature have approximately the same influence on the distance used for clustering. Note that the 

proposed algorithm automatically determines the number of clusters, whereas in standard 

objective function-based clustering additional strategies have to be applied in order to define the 

number of clusters. The next section deals with the evolving evaluation of the new data collected 

to the data set. 

The cluster selection abilities of DDAA are illustrated in Fig. 1 to artificial data set 

(Fig.1.a). Three significant peaks (Fig. 1.b) determined on the data assignment curves correspond 

to three good clusters that are selected in three algorithm passes (Fig. 1c). 

 

3. Evolving DDAA 

Let us suppose that the DDAA algorithm was applied to the data set X={xk}, k =1, …, N as 

it was described in the previous section. Thus, c-1 good clusters and their cluster centres have 



been found. The noise data are collected in one noise cluster. Let us also suppose that a new input 

data stream currently is added to the data set. The task is to find the proper assignment of the new 

coming points, entering one by one, to the already determined cluster structure or alternatively to 

account for a new cluster structure as a result of the input stream information. 

 In general there are three possibilities for every new coming data point xs: first, the new 

data could belong to a good cluster or secondly, it can be a noise data point (in case of fuzzy 

clustering, to belong to all clusters – good and fuzzy, but with different membership degrees). 

Finally, the new stream can change the data structure by forming additional clusters. 

The solution of the above considerations will be discussed in detail. Let us first suppose 

that we have a fixed threshold δh that is a distance limit value under which a given point is 

specified as a part of the good cluster. It could be defined equal to the minimal cluster radius: 
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where ri is the cluster radius of the i-th cluster defined as the maximal distance between the 

cluster centre vi and the points belonging to the cluster: 
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In order to evaluate the belonging of the current point to a cluster we need to assess the 

distance ds(i) between the new data point xs and each cluster centre vi, i = 1,…, c-1 calculated in 

the sense of the distance measure applied in the DDAA algorithm: 
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The data point is assigned to this good cluster that is closest to the new data point i.e. has minimal 

distance ds(i) and the minimal distance is less then the threshold δh.  If the data of the input 

stream can not be assigned to any good cluster than it is added to the noise cluster. However, in 

this case we should presume that the new coming data can change the cluster structure. In order 

to check this the DDAA algorithm is implemented over the new-formed noise cluster.  

The assignment of xs is provided easily according to the following procedure: 

Step 1: Calculate ds(i), i =1, …, c-1. 

Step 2: Find ) )((
1-c1,...,i
i dmind sn

=
= that defines the closest good cluster p. 

Step 3:  If hnd δ≤  



 assign xs to the cluster p and update cluster p thorough 

 calculating the new cluster centre value by (8). 

 If  hnd δ>  

 assign xs to the noise cluster and apply DDAA algorithm to the data of the 

 newly updated noise cluster. If new good cluster(s) is separated update the 

 data structure.  

 end 

 

If fuzzy clustering is applied then the procedure is carried out according to the 

membership degree us(i) of xs to every cluster presented in the data set.  Let us suppose that 

a threshold membership degree hu  is given in advance. It could be equal to the predefined 

value µtol used in the fuzzy DDAA algorithm. The assignment procedure is rewritten as 

follows: 

Step 1: Calculate ds(i), i =1, …, c-1. 

Step 2: Find ) )((
1-c1,...,i
i dmind sn

=
=  that defines the closest good cluster p. 

Step 3: Determine us(p) according to the eq. (7). 

Step 4: If hs upu ≥)(   

  assign xs to the cluster p and update cluster p thorough 
 calculating the new cluster centre value by (8). 

   If hs upu <)(    

   assign xs to the noise cluster and apply DDAA algorithm to the data of  
  the newly updated noise cluster. If new good cluster(s) is separated  
  update the data structure.  

  end 

 

If the data are grouped in complex clusters that have different shape, orientation and density 

then the assignment level will vary for the distinct clusters. It will be difficult to set a proper 

assignment threshold neither for hard, nor for the fuzzy clustering variant. In such case the 

evolving algorithm is organized so that the DDAA algorithm is spread and applied over the 

currently formed data set consisting of the data of the good cluster p closest to the point xs, all 

noise data and the current input data point xs itself. The separated good clusters update the cluster 

structure. In the fuzzy alternative variant the new data set includes all good clusters to which the 



current point xs belongs with membership degree larger than the given threshold hu =µtol used in 

the DDAA algorithm. 

The clustering capabilities of the evolving extension of the DDAA algorithm are shown in 

Fig.2 where the new data stream marked by ‘x’ is added point by point to the already known data 

set given in Fig.1. All new points are added to the noise cluster according to the set threshold δh 

=1.5. After the eight data point a new cluster (fourth for the considered data set) is separated and 

by that updated the cluster structure is updated (Fig.2.b). 

 

4. Conclusions 

The cluster identification method presented here is based on the assessment of the 

dynamics of the number of points that are assigned to only one cluster through noise clustering of 

the data set by slowly changing the noise distance from a reasonable large to a sufficiently small 

value. It successfully assigns the new input data stream to the already known data structure or 

discovers new interesting groups of the data set that currently appeared. Two algorithm variants – 

hard and fuzzy, are presented in parallel. Additionally two alternatives – when there is or there is 

no preliminary information about the assignment threshold are considered. 
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a) Data set 
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b) Data assignment dynamics in the first algorithm pass via normalized data set 
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c) Determined three clusteres corresponding to three significant peaks 

Figure 1. DDAA clustering algorithm applied to the artificial data set 
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a) The already clustered data are given by dots, the existed noise data are presented by circles, 

whereas new data stream is marked by circled ‘x’. 
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b) Selected additional (forth) cluster of the input data stream surrounded by the left noise data. 

The stars are cluster centeres. 

 

Figure 2. Evolving DDAA algorithm  

 

 


