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Abstract: Discovering interesting patterns or substructures in data streams is an important 

challenge in data mining. Clustering algorithms are very often applied to identify single 

substructures although they are designed to partition a data set. Another problem of clustering 

algorithms is that most of them are not designed for data streams. This paper discusses a recently 

introduced procedure that deals with both problems. The procedure explores ideas from cluster 

analysis, but was designed to identify single clusters without the necessity to partition the whole 

data set into clusters. The new extended version of the algorithm is an incremental clustering 

approach applicable to stream data. It identifies new clusters formed by the incoming data and 

updates the data space partition. Clustering of artificial and real data sets illustrates the abilities of 

the proposed method. 

 

1. Introduction 

One of the main issues in data mining is the discovery of interesting structures, patterns or 

rules in data. Depending on the type of data and the intention of the analysis, different models 

and algorithms are available for these problems. For instance, association rule and frequent item 

set mining was originally designed for categorical data. The techniques can be extended to 

numerical data, but only for the price of higher computational costs. In this paper we focus on 

exploratory data analysis of numerical data. Cluster analysis is a very common technique to find 

structures in such data spaces [2,10,14,16,18]. However, the purpose of cluster analysis is to 



partition the entire data set into “meaningful” substructures, whereas in many data mining 

problems there is no need for a partition of the whole data space. It is often sufficient to find a 

few interesting substructures that cover only a small proportion of the data set. Nevertheless, 

cluster analysis has become a popular tool for discovering substructures in the sense that most of 

the clusters are ignored and only the best ones are considered as important. For instance, in 

customer relationship management, one interesting question is customer segmentation, fitting 

perfectly to the concept of cluster analysis [5,15]. The significant task is to identify single groups 

of very typical customers without the necessity to assign all customers to clusters. Another 

typical example is the analysis of gene expression data where the biologist might not be 

interested in partitioning the whole set of genes of the considered organism. It is more important 

to find a few subgroups of genes with similar expression profiles within each group. 

Statistical methods, as they are for instance proposed in [26], provide one possible strategy 

for the identification of interesting groups in data. However, apart from their high computational 

costs and that they are not well-suited for handling a continuous stream of incoming data, they 

follow a slightly different philosophy purely based on density considerations compared to the 

idealised concept of well-separated clusters. 

Recently, a prototype-based clustering algorithm called Dynamic Data Assigning 

Assessment (DDAA) was proposed [11,18] whose intention is to identify single clusters step by 

step. It is based on the noise clustering technique [6,7] and finds single good clusters one by one 

and at the same time it separates the noise data. Two algorithm versions – hard and fuzzy 

clustering – are realisable according to the applied distance metric. The method can be used for 

two purposes: either in the sense of standard cluster analysis to determine the number of clusters 

automatically or in order to identify one or a few clusters that might cover only a part of the data 

set. 

In classical data analysis it is usually assumed that a data set is first collected completely 

and then the analysis is carried out. However, in data mining it is very common that we do not 

have a fixed data set, but a constantly growing amount of data coming in as a more or less 

constant stream. A possible way to analyse such data is to restart the corresponding algorithm 

completely, each time new data is arriving. However, this approach is neither very efficient nor 

suited to detect changes in the data. There is no explicit indication, when for instance a new 

cluster is built while the data set is updated. In data mining there are various newer approaches 

suited to analyse a stream of incoming data directly [5,15,20]. Single pass clustering, as it is for 



instance described in [12,19,25], comprises techniques that find clusters by a single pass through 

the data set, in contrast to iterative strategies like k-means clustering. In this way, single pass 

clustering can be applied to large data sets due to the low computational costs as well as to 

streaming data. It should be noted that we are interested in finding interesting patterns in one data 

stream. We do not want to cluster data streams as it is proposed in [25]. 

In this paper, we extend the original DDAA algorithm to detect single clusters in streaming 

data. In contrast to single pass clustering our aim is not to partition the data stream into clusters, 

but to discover interesting patterns in terms of single clusters that might cover only a small 

proportion of the full data stream. In the DDAA algorithm it is possible that a large part of the 

data is considered as noise in the sense that it is not assigned to any cluster. The new evolving 

DDAA algorithm assigns every new data point to an already determined good cluster or 

alternatively to the noise cluster. In this way, it checks whether the new data collection provides 

one or more new good clusters and thus changes the data structure. The assignment can be done 

in a hard or fuzzy sense. It should be emphasized that the identification of single clusters, even if 

the majority of the data is considered as noise, is the main purpose of our approach. Other 

algorithms, like DBSCAN [8] or its incremental version [9] take noise into account as well. 

However, DBSCAN defines clusters in terms of a homogeneous minimum density, i.e. the user 

must specify two parameters Eps and MinPts. For each point in a cluster the Eps-neighbourhood 

must contain at least MinPts points, otherwise the point is considered as noise. This means that 

the definition of noise is homogeneous in the whole data space and the decision which points are 

marked as noise or outliers strongly depends on the setting of these parameters. In our approach 

we use a dynamic noise distance, which has a different interpretation than the parameter Eps in 

DBSCAN, but allows for more flexibility in the detection of noise or outliers. In [5] an approach 

for clustering streaming data is proposed based on fuzzy cluster analysis. The focus there is again 

to partition the data set into (fuzzy) cluster, not as an approach to identify only a few interesting 

clusters among a large amount of noise data. 

The paper is organised as follows. The second section briefly reviews the necessary 

background on objective function-based clustering, the concept of noise clustering that we exploit 

in our approach and the underlying idea of the DDAA algorithm itself. At the end of the section, 

the well-known wine recognition data set is considered for illustration purposes. The evolving 

version of the DDAA algorithm is presented in detail in Section 3. In Section 4 we discuss a case 

study based on weather data. Comparison analysis is provided in section 5. Final conclusions are 



provided in the sixth section. 

 

2. Basic concepts and the DDAA algorithm 

2.1. Objective function-based clustering 

Objective function-based clustering aims at the minimization of an objective function J that 

indicates a kind of fitting error of the clusters to the data. In this objective function, the number of 

clusters has to be fixed in advance. The underlying objective function for most of the clustering 

algorithms is [2]: 
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where N is the number of data points; c is the number of clusters; uik and dik denote 

correspondingly the membership degree and the distance of the k-th data point 

][ 21 knkkk x,...,x,xx = , k = 1, ..., N, to the i-th cluster prototype, i = 1, ..., c. The fuzzifier 

m∈[1,∞) is the weighted exponent coefficient which determines how much clusters may overlap.  

When we choose the fuzzifier m=1, we have }10{ ,uik ∈  at a minimum of the objective function 

(1) and the resulting partition will be crisp. 

In order to avoid the trivial solution assigning no data to any cluster, i.e. setting all uik to 

zero, and to avoid empty clusters, the following constraints are introduced: 
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The parameters to be optimized are the membership degrees uik and the cluster parameters 

which finally determine the distance values dik. Each cluster is represented by a cluster prototype. 

In the simplest case, the cluster prototype is a single vector called cluster centre 

],...,,[ 21 iniii vvvv = , ci ,...,1= . The distance of a data point kx  to the i-th cluster is defined by a 

positive definite symmetric matrix Ai and the cluster centre as follows: 
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The matrix Ai is defined differently according to the applied objective function-based 

clustering algorithm [1,2,10,13,14,17] and determines the cluster shape and orientation. 

 

2.2. Noise clustering 

Arbitrary noise points that do not belong to any comprehensible cluster have to be taken 

into account. The successful solution to deal with noise in the data set is to collect the noise 

points in one single cluster [6]. For this purpose a virtual noise prototype with no parameters to 

be adjusted is introduced. It has always the same (large) distance δ  to all points in the data set. 

Let cluster number c be the noise cluster. Then, by definition [6] we have 

dck = δ ,  ∀ k. (4) 

The remaining c-1 clusters are assumed to be the good clusters in the data set. The objective 

function Jnoise that considers the noise cluster is defined in the same manner as in the general 

scheme for the clustering minimization functional (1) i.e. JJ noise ≡ , with some additional 

specifications. The distances for each point Nkxk ,...,1, =  are defined by (3) for all clusters 

1...,,1, −= cii and by 
22d δck =  for ci = . (5) 

The objective function Jnoise has the global minimum for a fixed noise distance δ  only if: 

a) for hard noise clustering (i.e. 1=m ) the membership degrees are: 

  0=iku for ∀ ji ≠  and  (6) 
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b) for fuzzy noise clustering ( 1>m ) the membership degrees are 
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(except for the rare case that a zero distance occurs, in which case the data point is assigned to a 

cluster to which it has zero distance) and the cluster centres of the good clusters are defined by 

the weighted mean value: 
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The specification of the noise distance δ is a matter of consideration for the particular data 

set. If δ is chosen too small then most of the data points will be classified as noise, while for a 

large δ value even outliers will be assigned to good clusters. 

Let us assume a special case when the data set consists of only one good cluster among a 

certain number of noise data considered as a noise cluster. Thus, for a certain δ value the two 

clusters could be separated in minimizing the objective function Jnoise, which is simplified for the 

particular case of c=2 to the following form:  
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The distance kd  denotes the distance between data point kx  and the centre 1v  of the single good 

cluster. The membership degrees are calculated for the fixed δ as:  

a) for hard noise clustering 

  11 =ku and   02 =ku if the k -th point belongs to the good cluster, i.e. kd ≤ δ  and  (10) 

  01 =ku and   12 =ku if the k -th point belongs to the noise cluster, i.e. kd > δ . (11) 

b) for fuzzy noise clustering the membership degree to the good cluster is defined as  
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and the membership degree to the noise cluster is correspondingly defined as: 
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Since we are still in the framework of probabilistic clustering the following statement is 

valid for both clustering variants: 

kk uu 21 1−= ,  N,...,k 1= . (14) 

The method presented below separates one cluster at a time based on the concept of noise 

clustering via a dynamic decrease of the noise distance.  

 

 



2.3. DDAA algorithm 

The procedure starts by choosing a large noise distance, for instance the diameter of the 

data set, so that all data points are assigned to the good cluster and no data are considered as 

noise. Then, decreasing the noise distance stepwise by a prescribed decrement δ∆ , for each 

jδδ =  value we can determine the number )( jNin  of data belonging to the good cluster according 

to their membership degrees – crisp (10) or fuzzy (12) – for the crisp and fuzzy algorithm 

versions, respectively. The index j denotes the current step of the noise distance reduction. 

Obviously, decreasing the distance δ , a process of “loosing good” data, i.e. assigning data to the 

noise cluster will begin. Continuing to decrease the noise distance, we will start to separate points 

from the good cluster and add them to the noise cluster, until the good cluster will be entirely 

empty as all data will be assigned to the noise cluster.  

The described dynamics of moving data from the good cluster to the noise cluster can be 

characterised by a curve )( jNin  showing the number of data points assigned to the good cluster 

over the varying noise distance. The velocity )( jNin∆  via the noise distance alteration is also 

evaluated:  

.)()1()( jNjNjN ininin −−=∆  (15) 

Note that not the time is used for the δ -axis and so these two curves should be viewed from right 

to left, when we want to observe the behaviour over time. By slightly decreasing the noise 

distance with decrement δ∆ =0.003 two curves are obtained (Figure 1.b) for the artificial data set 

given in Figure 1.a.  

It is clear that if we loose actual noise points (i.e. from a region of low data density) the 

curve )( jNin  will almost remain in a plateau, whereas a strong slope should be observed when 

data from an actual cluster (with higher density than the noise data) are moved to the noise 

cluster. In the general case of a complex data set, we will have a number of plateaus and a 

number of strong slopes in the curve. The peaks obtained from the curve inN∆ correspond to the 

slopes in the inN  curve. The area of every peak is proportional to the number of points that are 

separated to the noise cluster within the current slope. Only significant peaks whose area is larger 

than a predefined threshold tol are of real interest: 
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where )(min sδ  and )(max sδ  are correspondingly the left and right base of the peak s. 

The last significant peak (the left-most one in the )(in jN∆ curve) occurs when the data 

points of the last data cluster are moved to the noise cluster. These remaining data points define a 

good cluster that we remove from the whole data set. The other significant peaks also correspond 

to phases where at least one comprehensible cluster is shifted to the noise cluster. Data 

corresponding to insignificant peaks should be considered as noisy data. The whole procedure 

could be applied again over the reduced data set and repeated until no more significant peaks are 

identified. For instance, the three significant peaks in the bottom assignment curve in Figure 1.b 

correspond to the three good clusters (Figure 1.c) that are selected one by one in the respective 

three passes of the clustering procedure. 

In the context of fuzzy noise clustering the membership degree is calculated by equation 

(12) and the data point is assumed to belong to the good cluster if its membership degree is larger 

than a predefined value tolµ . However, being stricter in the identification of proper clusters, the 

prescribed threshold membership degree should be chosen larger and for a more tolerant 

identification, it should be chosen smaller. 

The Dynamic Data Assigning Assessment cluster identification algorithm is summarised as 

follows: 

Step 1 Specify the decrement step δ∆ and threshold tol. If fuzzy DDAA clustering is 

applied specify tolµ . 

Step 2 Compute the curves Nin and ∆Nin decreasing δ by the prescribed decrement δ∆ . 

Step 3 Find all peaks of ∆Nin curve and select the significant peaks according to (16). 

Step 4 Separate one good cluster determined by the last significant peak. 

Step 5 Subtract the separated points from the data set and repeat the procedure from Step 2 

for the remaining data points until no significant peaks could be found. 

 

As in most clustering algorithms we normalise the data set in advance in order to let each 

feature have approximately the same influence on the distance used for clustering. The choice of 

the decrement parameter ∆δ depends on the density of the particular data set. It should be varied 

in a certain range and an appropriate value is chosen such that at least two significant peaks in the 

∆Nin curve are provided. Usually (our experience covers several real world data sets) successful 

separation can be found for values from 0.01 to 0.001. Commonly, a more dense data set needs a 



lower decrement value. The other important parameter – the threshold tol –can be determined 

based on assumptions on the minimal amount of data that form a cluster or analysing the two 

dynamics curves. It is chosen approximately equal to the number of points that form the last 

significant peak. In the fuzzy DDAA version  µtol is set by default to 0.5 which gives satisfactory 

results. However, application of specific knowledge can improve the selection results. 

2.4. Clustering of wine data  

In this subsection, clustering of the wine recognition data [23] is applied in order to 

illustrate the abilities of the DDAA algorithm. The wine data set is the result of a chemical 

analysis of wines grown in the same region in Italy but derived from three different cultivars. The 

analysis determined quantities for 178 instances characterized by 13 features and found in each of 

the three types of wines.  

The parameters of the hard DDAA algorithm were set by analysing the ∆Nin curve obtained 

in the first algorithm pass for the normalised data set. The value of the decrement parameter was 

defined as ∆δ=0.01, resulting in three significant peaks in the ∆Nin curve. The threshold tol=18 

allows to select the three clusters in three algorithm passes (Figure 2). The first cluster is 

separated at δ=0.46 (Figure 2.a), the second – at δ=0.52 (Figure 2.b) and the third one at δ=0.48 

(Figure 2.c). All points clustered by the DDAA method except one of the third cluster were 

successfully assigned to the corresponding classes (Table 1). This means that the obtained 

clusters and calculated cluster centres provide a reliable data partition. A relatively large amount 

of 69 non-clustered points is assigned to the noise cluster. As we do not have information about 

the cluster shape we are searching for hyper-spherical clusters according to the applied Euclidean 

distance metric. However, the real cluster shape is more complex which is “invisible” for our 

algorithm. There is an indication [22] that the clusters (classes) in the wine data set are of hyper-

ellipsoidal shape. The DDAA algorithm can be extended in a straight forward manner to other 

cluster shapes, simply by replacing the cluster prototype update scheme (8) by the scheme for the 

corresponding cluster shape. 

 

3. Evolving DDAA 

Let us suppose that the DDAA algorithm was applied to the data set X={xk}, k =1, …, N as 

it was described in the previous section. Thus, c-1 good clusters and their cluster centres have 

been found. The noise data are collected in one additional noise cluster. Let us also suppose that a 

new input data stream is currently added to the data set. The task is to find the proper assignment 



of the new incoming points, entering them one by one, to the already determined data structure or 

alternatively to account for a new structure as a result of the incoming information. 

In general, there are three possibilities for every new coming data point xs: first, the new 

data point could belong to a good cluster or secondly, it can be a noise data point. In case of fuzzy 

clustering the point belongs to all clusters – good and fuzzy, but with different membership 

degrees. Finally, the new stream data can change the structure by forming additional clusters. As 

we restrict the clustering to the case when the characteristics of the data stream will not change 

significantly over time, we do not consider the case of elimination of clusters due to disappearing 

concepts, since we had to rebuild them again later on. 

The below developed evolving procedures enable us to detect the following possible 

changes in the data structure: 

• Movement of existing clusters; 

• Creation of new clusters; 

• Merging of clusters; 

 

3.1. Hard evolving DDAA 

First, the solution will be discussed in the hard clustering variant. Let us suppose that we 

have a fixed threshold δh that is a distance limit value under which a given point is specified as a 

part of the good cluster. We propose the following procedure except in case when it is context-

determined. The threshold is calculated equal to the minimal cluster radius: 
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where ri is the cluster radius of the i-th cluster defined as the maximal distance between the 

cluster centre vi and the points belonging to this cluster: 
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In order to evaluate the membership of the current point to a cluster we need to assess the 

distance ds(i) between the new coming data point xs and each cluster centre vi, i = 1,…, c-1 

calculated in the sense of the distance measure applied in the DDAA algorithm: 

.1,...,1)()( 2 −=−= cixvid
iAsis  (19) 

The data point xs is assigned to the closest good cluster, for which the distance (19) is minimal 



and simultaneously less than the threshold δh. Otherwise, xs cannot be assigned to any good 

cluster and then it is added to the noise cluster. In this case we should presume that the new data 

point could change the data structure. In order to check whether a new good cluster is formed 

within the data classified as noise, we run the DDAA algorithm for the new-formed noise cluster. 

Additionally we apply a procedure of cluster merging in case some of the clusters in the updated 

partition are closer than the prescribed threshold dv_tol. For this purpose we calculate the 

distances between all cluster centres and compare them to dv_tol. The threshold dv_tol could be 

determined by different strategies as: 

- according to some particular knowledge of the considered data set; 

- dv_tol = 2δh  i.e. we presume that the threshold is restricted by the diameter of the 

smallest cluster provided in the original data set; 

The assignment of each new stream point xs to the already known data partition is 

accomplished according to the following procedure: 

Step 1  Insert xs to the data set, N=N+1. Calculate ds(i) by (19). 

Step 2 Find ))((
1-1,...,i

 idmind s
c

p
=

= , i.e. the closest cluster p. 

Step 3 If hpd δ≤  

• Assign xs to the cluster p.  

• Update the position of the existing cluster centres applying formula (8). 

 else  hpd δ>  

• Assign xs to the noise cluster. 

• Apply the DDAA algorithm to the newly obtained noise cluster. 

• If a new good cluster is separated, update the data structure: 

- Increase the number of clusters c=c+1; 

- Update the position of the existing cluster centres applying formula (8). 

Step 4  Calculate the distances between cluster centres of all determined good clusters: 

 .1,...,1,,)(),( 2 −=−= cjivvjidv ji  

Step 5  If toldvjidv _),( <  then merge the i-th and j-th cluster, 1,...,1, −= cji : 

• Decrease the number of clusters c=c-1; 

• Update the position of the newly defined cluster centre applying formula (8) 

for all points belonging to the merged clusters. 



 

         3.2. Fuzzy evolving DDAA 

If fuzzy clustering is applied then the procedure is carried out according to the 

membership degree us(i), i = 1, …, c of xs to every cluster present in the data set. Let us 

suppose that a threshold membership degree hu  is given in advance. It could be chosen 

equal to the predefined value µtol used in the fuzzy DDAA algorithm. The assignment 

procedure is rewritten as follows: 

 

Step 1 Insert xs to the data set, N=N+1. Calculate ds(i) by (19); 

Step 2 Find ))((
11,...,i

 idmind s
c-

p
=

= , i.e. the closest cluster p. 

Step 3 Find up according to (7) and for the fixed δ =δh. 

Step 4 If hp uu ≥   

• Assign xs to the cluster p.  

• Update the position of the existing cluster centres applying formula (8). 

 else hp uu <    

• Assign xs to the noise cluster. 

• Apply the DDAA algorithm to the newly obtained noise cluster. 

• If a new good cluster is separated update the data structure: 

- Increase the number of clusters c=c+1; 

- Update the position of the existing cluster centres applying formula (8). 

Step 5 Calculate the distances between cluster centres of all determined good clusters: 

 .1,...,1,)(),( 2 −=−= cjvvjidv ji  

Step 6 If toldvjidv _),( <  then merge the i-th and j-th cluster: 

• Decrease the number of clusters c=c-1; 

• Update the position of the new defined cluster centre applying formula (8) for 

all points belonging to the merged clusters. 

 

If the data are grouped into complex clusters that have different shape, orientation and 

density then the assignment thresholds δh, uh and the respective value dv_tol will vary in wide 

ranges for the distinct clusters. It will not be easy to set a proper assignment threshold neither for 



hard, nor for the fuzzy clustering variant. In such case the evolving algorithm is organised so that 

the DDAA algorithm applied in the respective steps 3 and 4 in the evolving DDAA procedures is 

spread and applied over the current input data point xs, the data of the closest good cluster p and 

all noise data. The separated good cluster(s) update(s) the data structure. However, this will 

increase the computational costs.  

The clustering capabilities of the evolving extension of the DDAA algorithm are 

demonstrated on the artificial data set processed in Section 2 (Figure 1.a). The new data stream is 

added point by point to the data set (Figure 3.a). The first seven new points do not change the 

existing data partition and are added to the noise cluster according to the set threshold δh =1.5 

obtained by equations (17) and (18). After the 8th data point a new cluster – fourth for the 

considered data set – is separated by the DDAA algorithm. The partition is updated by adding the 

new cluster (Figure 3.b). 

 

4. Application to weather data 
 
The case study data set comes from a weather database containing three specific air and wind 

features that were measured hourly at the small German island Helgoland during the first months 

of the year 1997. The features are air pressure, wind direction and wind strength. The wind 

direction is measured in 10 degrees steps. In order to obtain the angle of the wind direction, we 

have to multiply the corresponding value of the data set by 10. The wind with angle direction 0 

(or equivalently 360) degrees corresponds to wind from the north direction. The angle is 

measured counter-clockwise. 

Although the data set is already complete, in order to demonstrate how our method can be 

applied, we assume that only the data from the first month (January) are available, altogether 744 

data points. For this relatively small data set the DDAA algorithm parameters are determined 

easily. The decrement parameter ∆δ = 0.003 was defined in such a way that significant peaks in 

the ∆Nin curve are provided: it was varied in the range from 0.01, when only one cluster is 

selected, to 0.002 with many small peaks and one large peak, not leading to a meaningful 

clustering result. The other important parameter – threshold tol – was determined according to the 

Nin curve (Figure 4). The threshold value tol = 25 was chosen approximately equal to the number 

of points that are assigned to the noise cluster through the last significant peak (the left most in 

the ∆Nin curve) whose right base corresponds to δ = 0.115. Six clusters that separate 627 data 



points and one noise cluster of 117 data points were selected. The coordinates of the cluster 

centres are given in Table 2 and the distribution of the assigned number of data in Table 3. 

According to the clustering results, the weather in January at the considered area is 

characterized by 6 typical weather types that corresponds to the six good clusters. Bearing in 

mind that the minimal and maximal measured air pressure of the whole data set are 9711 and 

10403, respectively, the clusters indicate medium (clusters No 1,2,3,6) and high (clusters No 4 and 

5) pressure (Table 2). The wind strength in January was relatively small and does not change 

significantly throughout the clusters. Just in one group (cluster 6) it is in the middle of its interval 

of possible values for the whole data set. The wind direction is the parameter with the highest 

variation: the first and second cluster comprise data that are characterised by southern (S) wind, 

the third and fourth by eastern (E) wind, whereas for the fifth cluster the wind is western-northern 

(WN) and for the sixth cluster eastern-southern (ES) wind. 

The 132 data points measured subsequently have been treated as a stream data set. The 

evolving DDAA algorithm is applied to them in order to determine the data partition. The 

threshold δh = 40 value is set (almost) equal to the minimal distance equal to 41.916 between the 

already defined cluster centres. As a result of the clustering a seventh cluster with cluster centre 

v7 = (10279, 25, 43) is separated (Figure 5). The new cluster comprises data of the first few days 

of February as well as some noise data that had not been assigned to any good cluster in the data 

from January. Despite the new found cluster and cluster 5 are close to each other, we keep them 

separated as the new cluster recognizes weather that is characterised by high pressure, western 

wind and relatively low wind strength. At the same time, the already selected clusters have been 

extended by new data, which can be seen in Table 3.  

These results fit well to the real meteorological conditions of the considered area. This is a 

zone where some cold winter periods exist in winter caused by either eastern or northern winds. 

The northern winds usually come along with high pressure – cold, but sunny, no strong wind. 

They are more typical for late winter (February). Thus, the seventh cluster found in the new data 

stream presents a transitional period to the late winter weather conditions. 

5. Comparison analysis  

Most of the objective function-based clustering algorithms seeking for all clusters at once 

are based on validity measures to assess the quality of the partition. They depend on the 

algorithm initialisation. The algorithms will converge to a local minimum, in the worst case to a 

saddle point. For the global minimum or a good local minimum, the computed clusters should 



correspond to the good or true clusters in the data set [1,2,3,7,21]. The main difference of our 

algorithm lies in the strategy of searching for a good cluster accomplished at every algorithm 

pass. We do not try to minimize the standard objective function. We have a more local view on 

clusters separated at a certain level of the noise distance. Thus, we do not choose a constant δ, but 

vary δ from an initial large value to a small (usually zero) value.  

Another comparison could be done over a clustering approach based on the evolving, 

distance-based partitioning methods [4,20,24]. One of the quite frequently applied clustering 

methods in the last decade is the subtractive clustering proposed by Chiu [4], which is an 

improved version of the mountain clustering method introduced by Yager and Filev [24]. In 

subtractive clustering the clusters are selected one by one according to the estimated potential of 

a point to be a cluster centre. A data point with many neighbouring data points will have a high 

potential value. Four clustering parameters need to be properly adjusted in advance in order to 

obtain a reliable data partition – cluster radius, squash factor, accepting and rejecting rate. 

Although the preferable values of the clustering parameters are mentioned in [4], experience 

shows that they should be fine tuned according to the particular data set.  

In contrast to subtractive clustering the adjusted parameters in the hard DDAA algorithm 

are only two and in case of fuzzy DDAA one more parameter µtol. The most important parameter 

is the decrement value ∆δ  that specifies the reduction rate of the noise distance and strongly 

depends on the density of the searched clusters. The second parameter is the threshold tol that 

determines the number of points above which a defined peak is selected as a significant one. An 

important advantage of the DDAA algorithm is the possibility to visualise the dynamics of the 

assigned data points to the good cluster. Both curves – the acceptance rate and its velocity – can 

be plotted independently of the data dimensionality. One can easily adjust the proper threshold 

value tol simply by looking at the significant steepness of the slopes. In this sense, we do not 

claim that the DDAA algorithm performs better than others, but its few control parameters can be 

handled in a very intuitive way using simple visualisations. 

The key of subtractive and DDAA clustering methods is that they do not involve any 

iterative optimisation and thus, the computation grows only linearly with the dimension of the 

problem (number of data as well as attributes). It should be mentioned that the DDAA algorithm 

incorporates relatively simple mathematical formulae. We are also free in the choice of the 

cluster prototype for every distinct good cluster to be identified. We can also use more 

complicated prototypes for more flexible cluster shapes as they are very often found in objective 



function-based clustering. 

 

6. Conclusions 

The cluster identification method presented here is based on the assessment of the 

dynamics of the number of points that are assigned to only one cluster through noise clustering of 

the data set by slowly changing the noise distance from a reasonably large to a sufficiently small 

value. It successfully assigns the new input data stream to the already known data structure or 

discovers new interesting groups of the data set that currently appeared. Two algorithm variants – 

hard and fuzzy – are presented in parallel. Additionally two alternatives – when there is or there 

is no preliminary information about the assignment thresholds – are considered. 
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b) Data assignment dynamics in the first algorithm pass via the normalized data set 
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Figure 1. DDAA clustering algorithm applied to the artificial data set 

 

 

 

 

 
a) Data assignment dynamics in the first algorithm pass 
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b) Data assignment dynamics in the second algorithm pass 

 

 

 
c) Data assignment dynamics in the third algorithm pass 

 

Figure 2. The dynamics curves obtained for wine data clustering by the DDAA method 
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a) The already clustered data are given by dots, the noise data are presented by circles, whereas 

the new data stream is marked by circled ‘x’. 
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b) The previous clusters and the selected additional (forth) cluster of the input data stream 

surrounded by the left noise data. The stars are cluster centres. 

 

Figure 3. Evolving DDAA algorithm applied to the artificial data set 

 

 

 



 

 
 

Figure 4. Data assignment dynamics in the first algorithm pass; ∆δ = 0.003 and tol = 25. 
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Figure 5. Clustering results: red * – cluster centres defined by DDAA algorithm, blue * – cluster 

centre of the new cluster determined by Evolving DDAA algorithm, o – noise data; 
clustered data are given by points. 

 
 

Table  1. Partitioning of the wine data set 

∆Nin 

Nin 



Cluster Amount 
given in the 

data set 

Amount 
obtained by 

DDAA 

Amount of 
coinciding 

points 
1 59 44 44 

2 71 35 35 

3 48 30 29 

 

Table 2. Cluster centres of the weather data set partitioning 
Cluster 
centre 

v1 v2 v3 v4 v5 v6 

Air pressure 10231 10193 10149 10297 10353 10211 
Wind direction 19 (≈S) 21(≈S) 11(≈E) 11(≈E) 30(≈WN) 14(≈ES) 
Wind strength 52 69 54 61 75 133 

 

 
 
 
Table 3. Number of assigned data by the DDAA and evolving DDAA algorithm 
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