
Sequence Mining for Customer Behaviour
Predictions in Telecommunications

Frank Eichinger1, Detlef D. Nauck2, and Frank Klawonn3

1 Universität Karlsruhe (TH), Institute for Program Structures and Data
Organisation (IPD), Karlsruhe, Germany, eichinger@ipd.uka.de

2 BT Group plc, Intelligent Systems Research Centre, Ipswich, UK,
detlef.nauck@bt.com

3 University of Applied Sciences Braunschweig/Wolfenbüttel, Department of
Computer Science, Wolfenbüttel, Germany, klawonn@fh-wolfenbuettel.de

Abstract Predicting the behaviour of customers is challenging, but im-
portant for service oriented businesses. Data mining techniques are used
to make such predictions, typically using only recent static data. In this
paper, a sequence mining approach is proposed, which allows taking his-
toric data and temporal developments into account as well. In order to
form a combined classifier, sequence mining is combined with decision
tree analysis. In the area of sequence mining, a tree data structure is
extended with hashing techniques and a variation of a classic algorithm
is presented. The combined classifier is applied to real customer data and
produces promising results.

1 Introduction

Predicting churn, i.e. if a customer is about to leave for a competitor, is an im-
portant application of analysing customer behaviour. It is typically much more
expensive to acquire new customers then to retain existing ones. In the telecom-
munication industry, for example, this factor is in the range of about five to eight
[1]. Correctly predicting that a customer is going to churn and then successfully
convincing him to stay can substantially increase the revenue of a company, even
if a churn prediction model produces a certain number of false positives.

Beside the prediction of churn, other customer-related events like faults, pur-
chases or complaints can be predicted in order to be able to resolve some prob-
lems before the actual event occurs. The prediction of sales events can be used
for cross-selling, where a certain product is offered just to customers who have
an increased likelihood to buy it.

In the telecommunications industry the available customer data is typically
timestamped transactional data and some static data (e.g. address, demograph-
ics and contract details). Transactional data are sequences of timestamped events
which can easily be stored in relational database tables. Events can be any kind
of service usage or interaction, particularly calls to the company’s call centre,
for example, complaints or orders.



In the area of data mining, many approaches have been investigated and im-
plemented for predictions about customer behaviour, including neural networks,
decision trees and näıve Bayes classifiers (e.g., [1, 2, 3]). All these classifiers work
with static data. Temporal information, like the number of complaints in the last
year, can only be integrated by using aggregation. Temporal developments, like
a decreasing monthly billing amount, are lost after aggregation. In this paper,
sequence mining as a data mining approach that is sensitive to temporal devel-
opments is investigated for the prediction of customer events.

In Chapter 2 we present sequence mining and its adoptions for customer data
in telecommunications along with an extended tree data structure. In Chapter
3, a combined classification framework is proposed. Chapter 4 describes some
results with real customer data and Chapter 5 concludes this paper and points
out the lessons learned.

2 Sequence Mining

Sequence mining was originally introduced for market basket analysis [4] where
temporal relations between retail transactions are mined. Therefore, most se-
quence mining algorithms like AprioriAll [4], GSP [5] and SPADE [6] were de-
signed for mining frequent sequences of itemsets. In market basket analysis,
an itemset is the set of different products bought within one transaction. In
telecommunications, customer events do not occur together with other events.
Therefore, one has to deal with mining frequent event sequences, which is a
specialisation of itemset sequences. Following the Apriori principle [7], frequent
sequences are generated iteratively. A sequence of two events is generated from
frequent sequences consisting of one event and so on. After generating a new
candidate sequence, its support is checked in a database of customer histories.
The support is defined as the ratio of customers in a database who contain the
candidate sequence in their history.

2.1 Sequence Mining for Customer Behaviour Predictions

A crucial question in sequence mining is the definition of the relationship “S
is contained in T” (denoted as S ≺ T ), which is decisive for determining the
support of a sequence. Originally, a sequence S is contained in a sequence T , if
all elements of S occur in T in the same order [4]. It does not matter if S and T
are equal or if one or more additional events are contained in T as well. A strict
definition would not allow any extra events in between the events of sequence T ,
but at its beginning and end. For example, 〈C ← B ← A〉 ≺ 〈X ← X ← X ←
C ← Y ← B ← Y ← A ← Z〉 is true in the original definition, but not in the
strict one as there are two events Y which are not allowed.

In this work, we want to use sequence mining for classification. If a certain se-
quence of events was identified leading to a certain event with a high confidence,
we want to use this sequence for classifying customers displaying the same se-
quence. If we chose the strict definition of “is contained in”, we would not classify



customers correctly who contain a very significant sequence but with an extra
event in between. This extra event could be a simple call centre enquiry which
is not related to the other events in the sequence. The original definition would
allow many extra events occurring after a matched sequence. In the application
to customer behaviour prediction, a high number of more recent events after a
significant sequence might lower its impact. Therefore, we introduce two new
sequence mining parameters: maxGap, the maximum number of allowed extra
events in between a sequence and maxSkip, the maximum number of events at
the end of a sequence before the occurrence of the event to be predicted. With
these two parameters, it is possible to determine the support of a candidate se-
quence very flexibly and appropriately for customer behaviour predictions. For
instance, the presented example is true if maxGap = 2 and maxSkip = 3. It is
not true any more, if one of the parameters is decreased.

2.2 The Sequence Tree Data Structure

Multiple database scans, which are necessary after every generation of candidate
sequences, are considered to be one of the main bottlenecks of Apriori-based
algorithms [8, 9]. Such expensive scans can be avoided by storing the database
of customer histories efficiently in main memory. In association rule mining,
tree structures are used frequently to store mining databases (e.g., [8]). In the
area of sequence mining, trees are not as attractive as lattice and bitmap data
structures (e.g., [6, 9]). This is due to smaller compressing effects in the presence
of itemsets. In our case, as well as in the application of sequence mining to
web log analysis (e.g., [10]) where frequent sequences of single events are mined,
tree structures seem to be an efficient data structure. In this paper, such a tree
structure or more precisely trie memory4 [11] as known from string matching
[12], is employed to store sequences compressed in main memory. We call our
data structure SequenceTree.

In the SequenceTree, every element of a sequence is represented in an inner-
or leaf node. The root node and all inner nodes contain maps of all direct suc-
cessor nodes. Each child represents one possible extension of the prefix sequence
defined by the parent node. The root node is not representing such an element,
it just contains a map of all successors, which are the first elements from all
sequences. Every node, except the root node, has an integer counter attached
which indicates how many sequences are ending there.

An example for a SequenceTree containing five sequences is given in Figure
1. To retrieve the sequences from the tree, one can start at every node with a
counter greater than zero and follow the branch in the tree towards the root
node. Note that if the sequence 〈A ← B ← C〉 is stored already, just a counter
needs to be increased if the same sequence is added again. If one wants to add
〈A← B ← C ← D〉, the last node with the C becomes an inner node and a new
leaf node containing the event D with a count of one is added.

4 Tries are also called prefix trees or keyword trees.



B

C

A

B

C

{A, B, C}

{B, C}

{C}

{}

{}

{}

Figure 1. A SequenceTree containing the sequences 〈A← B ← C〉, 〈A← B〉 (twice),
〈A← C〉 and 〈B〉. The number after “:” indicates the count how many sequences are
ending in the node. The hash tables with all subsequent events are denoted by {}.

The compact storage of sequences achieved using the SequenceTree is due to
two compressing effects:

1. The usage of counters as in [8, 9, 10] avoids the multiple storage of the same
sequences. Obviously, the compression ratio depends very much on the kind
and amount of data. Experiments with real customer data showed that the
usage of counters reduces the memory necessary to store the sequences by a
factor of four to ten.

2. Sequences with the same prefix sequence are stored in the same branch of a
tree as done in the finite state machines known from string pattern matching
[12]. Especially if sequences are long, this technique can reduce the memory
needed significantly.

In sequence mining algorithms like in [4, 5] or in the one described in the
following subsection, it happens very frequently that a candidate sequence is
being searched in a database in order to determine its support. These searches
can be very time consuming, even if the database is stored in an efficient data
structure. In order to speed up searches in the SequenceTree, hash tables are
used in every node which contain all events occurring in all succeeding nodes. If
a candidate sequence is searched in the tree, the search can be pruned at an early
stage if not all events in the searched sequence are included in the hash table of
the current node. For example, we want to count the support of the sequence
〈A← B ← D〉 in the SequenceTree from Figure 1. The search algorithm would
check the hash table of the root node first. As D is not contained in this table,
the search could be stopped immediately. As hash tables provide constant time
performance for inserting and locating [13], the maintenance of hashtables as
well as lookups do not require much extra time. Also the memory overhead is
marginal as it is sufficient to store small pointers to events in the hash tables.
In our experiments we measured a speed up of three by utilising hash tables in
a SequenceTree during a real churn prediction scenario.



2.3 Sequence Mining Using the Sequence Tree

In Figure 2 a sequence mining algorithm taking advantage of the SequenceTree
is described. This algorithm is based on AprioriAll [4], adopts its candidate
generation, but avoids multiple database scans as the database is being loaded
into a SequenceTree first. In every iteration, candidate sequences candidatesk

are generated. Afterwards, the support of every candidate cand is calculated in
the SequenceTree C. Only Sequences exceeding a user defined minimum support
minSup are kept and returned at the end.

Require: C (database of customers), minSup(sequence mining parameter)
L1 = {〈E〉 | support(〈E〉) ≥ minSup}
for (k = 2; Lk−1 6= ∅; k++) do

candidatesk = generate candidates(Lk−1)
for all (cand ∈ candidatesk) do

cand .count = C.determineSupport(cand)
end for
Lk = {cand | support(cand) ≥ minSup ∧ cand ∈ candidatesk}

end for
return

S
k{S | S ∈ Lk}

Figure 2. Sequence mining algorithm with C stored in a SequenceTree.

The method determineSupport() is responsible for calculating the support
of a sequence. This is done by performing a greedy depth first search of the
candidate sequence in the SequenceTree5. Due to the introduced parameters
maxGap and maxSkip which allow a flexible definition of support, the search
is not as easy as searches in string matching [12]. The parameter maxGap is
implemented by skipping up to maxGap nodes during the search and backtrack-
ing afterwards. Backtracking and searching in all possible branches is necessary,
as a candidate sequence can occur in several branches if gaps are allowed. The
parameter maxSkip requires to perform up to maxSkip searches in parallel. Up
to maxSkip events can be skipped at the beginning of a search. Therefore, a new
parallel search is started at every node which is reached by the search algorithm
by traversing deeper into the tree.

2.4 Experimental Sequence Mining Results

Sequence mining as described in the previous subsection was applied to real
customer data in a churn prediction scenario. The dataset used was artificially
sampled in order to obtain an overall churn rate of exactly 4%. A number of
sequences were found and for every sequence a confidence value was calculated.
The confidence value is a likelihood for the occurrence - in this case - of a churn
5 All algorithms traversing the tree were implemented iteratively as our experiments

showed a significant performance gain compared to recursive implementations.



event. The result was a set of sequential association rules like the following one:
“〈ENQUIRY ← ENQUIRY ← REPAIR〉, confidence = 4.4%, support =
1.2%”, meaning that 1,2% of all customers display the pattern with a specific
repair first, than an enquiry followed by another enquiry in their event history.
4.4% of all customers with this pattern are having a churn event afterwards.
Therefore, we know that customers displaying this pattern have a slightly higher
churn probability than the average of all customers. On the other hand, a support
of 1,2% means that just a small fraction of all customers is affected. This rule
is just one rule in a set of around hundred rules (depending on the predefined
minimum support). Only some rules exist with a higher confidence of around
10%, but they affect even smaller fractions of customers. Even if such a rule
with a high confidence of e.g. 10% is used to identify churners, this rule would
still classify 90% of the customers incorrectly. Therefore, even a large set of
sequential association rules was not suitable for churn prediction.

3 A Framework for Customer Behaviour Prediction

Given that more information than just the sequential order of events was avail-
able in our application scenario, we built a classifier which is based on sequence
mining, but analyses additional attributes with decision trees. These additional
attributes are such associated with the customer (e.g., the contract duration),
the sequence (e.g., the number of days between two events) and the events itself
(e.g., the time to resolve a repair). A similar combination of sequence mining
and other classifiers has been successfully implemented in bio-informatics [14].
In the following, we describe a prediction framework (Figure 3) consisting of a
model building process and a classification process.

In the model building process, sequence mining as described in the previous
section is applied first. Afterwards, a decision tree is induced and pruned for each
detected sequence incorporating a number of further attributes. The sequences
are saved together with the corresponding decision trees building a combined
classification model.

In the classification process, single customers are classified using the classi-
fication model. At first, sequences that are supported by the customer’s event
history are selected from the model. Subsequently, the customer is classified by
the decision trees associated with these sequences. The final classification of the
customer is computed by averaging all results and applying a threshold value.

4 Experimental Results

The combined classifier was applied to real customer data from a major European
telecommunication provider. In this paper, just some results from a churn predic-
tion scenario are presented, even if the model was tested in a number of different
scenarios for different events. For reasons of data protection, non-representative
random test samples with a predefined churn rate had to be generated. In a
three months churn prediction scenario, the combined classifier was first trained



sequence mining
with min. support

sequential 
association 

rules

decision tree learning 
and pruning

(for every rule)

classification 
model:

sequences with 
decision trees

Model Building Process

classificated 
customer

Classification Process

customer 
database

select matching rules
classify customer with 

matching decision 
trees

aggregate 
classifications and 

apply treshhold

preprocessing

preprocessing

Figure 3. The framework for customer behaviour prediction.

with historic data including all events within one year and then applied to a test
set from a more recent time window. The classifier found 19.4% of all churners
with a false positive rate of only 2.6%. The gain6 of this test result – the ratio
how much the classifier is better than a random classifier – is 5.5.

It is hard to compare our test results. On the one hand, all results related
to customer data are usually confident and therefore they are not published. On
the other hand, published results are hardly comparable due to differences in
data and test scenarios. Furthermore, most published results were achieved by
applying the predictive model to a test set from the same time window (e.g., [3])
instead of making future predictions.

5 Conclusion and Lessons Learned

In this paper we extended a tree data structure and approach for sequence
mining. This approach was combined with decision trees in order to form a
combined classifier which is able to predict any desired customer event.

In the area of sequence mining, we showed that traditional definitions of
support and especially of the “is contained in” relationship are not feasible for
customer behaviour predictions. We introduced two new parameters to flexibly
specify this relation.

As multiple events at the same time are unusual in telecommunication cus-
tomer data, we introduced an extended tree data structure and algorithm for
6 The gain measure is defined as the predictor’s churn rate (the ratio of all correctly

predicted churners to all customers predicted as churners) divided by the a priori
churn rate (the rate of churners in the test set).



mining sequences of single events. We showed that our tree structure in combi-
nation with hashing techniques is very efficient.

Our investigations showed that sequence mining alone is not suitable for
making valuable predictions about the behaviour of customers based on typically
rare events like churn. However, it is capable of discovering potentially interesting
relationships concerning the occurrence of events.

Furthermore, our study showed that it is more promising to analyse temporal
developments by employing sequence mining in combination with other classifiers
than to use only static classification approaches.

References

[1] Yan, L., Miller, D.J., Mozer, M.C., Wolniewicz, R.: Improving Prediction of Cus-
tomer Behavior in Nonstationary Environments. In: Proc. International Joint
Conference on Neural Networks (IJCNN). (2001)

[2] Buckinx, W., Baesens, B., den Poel, D., van Kenhove, P., Vanthienen, J.: Using
Machine Learning Techniques to Predict Defection of Top Clients. In: Proc. 3rd
International Conference on Data Mining Methods and Databases. (2002) 509–517

[3] Neslin, S.A., Gupta, S., Kamakura, W., Lu, J., Mason, C.H.: Defection Detec-
tion: Measuring and Understanding the Predictive Accuracy of Customer Churn
Models. Journal of Marketing Research 43(2) (2006) 204–211

[4] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. 11th International
Conference on Data Engineering (ICDE). (1995) 3–14

[5] Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. In: Proc. 5th International Conference Extending Database
Technology (EDBT). (1996) 3–17

[6] Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Ma-
chine Learning 42(1–2) (2001) 31–60

[7] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc.
20th International Conference Very Large Data Bases (VLDB). (1994) 487–499

[8] Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Genera-
tion. In: Proc. ACM SIGMOD International Conference on Management of Data
(SIGMOD). (2000) 1–12

[9] Savary, L., Zeitouni, K.: Indexed Bit Map (IBM) for Mining Frequent Sequences.
In: Proc. 9th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD). (2005) 659–666

[10] El-Sayed, M., Ruiz, C., Rundensteiner, E.A.: FS-Miner: Efficient and Incremental
Mining of Frequent Sequence Patterns in Web Logs. In: Proc. 6th ACM Workshop
on Web Information and Data Management (WIDM). (2004) 128–135

[11] de la Briandais, R.: File Searching Using Variable Length Keys. In: Proc. Western
Joint Computer Conference. (1959) 295–298

[12] Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM 18(6) (1975) 333–340

[13] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Series
in Computer Science and Information Processing. Addison-Wesley (1982)

[14] Ferreira, P.G., Azevedo, P.J.: Protein Sequence Classification Through Relevant
Sequence Mining and Bayes Classifiers. In: Proc. 12th Portuguese Conference on
Artificial Intelligence (EPIA). (2005) 236–247


