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Abstract

This contribution is concerned with a detailed investigation of linearity axioms for fuzzy
orderings. Different existing concepts are evaluated with respect to three fundamental cor-
respondences from the classical case—linearizability of partial orderings, intersection rep-
resentation, and one-to-one correspondence between linearity and maximality. As a main
result, we obtain that it is virtually impossible to simultaneously preserve all these three
properties in the fuzzy case. If we do not require a one-to-one correspondence between
linearity and maximality, however, we obtain that an implication-based definition appears
to constitute a sound compromise, in particular, if tukasiewicz-type logics are considered.
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1 Introduction

Orderings are fundamental concepts in mathematics, among which linear orderings
play an outstanding role [29]. Beside the context of orderings, in a more general
setting, the linearity property also has a great importance in modeling of prefer-
ences by relational constructs, since it corresponds to the important property of full
comparability (often calledompletenegsor, in other words, absence of incompa-
rability.
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Fuzzy relations have been introduced in order to provide more flexible models
for expressing relationships [13, 15, 23, 25, 26, 35]. The appropriate definition of
completeness/linearity, however, is by far not as straightforward as in the classical
Boolean case. Several different approaches appear in literature; a systematic for-
mal study with respect to deep logical and algebraic properties, however, has not
yet been conducted so far.

The aim of this paper is to investigate three existing definitions of completeness
of fuzzy relations in detail. For that purpose, we consider the most fundamental
relations for which completeness plays a role—fuzzy orderings—and evaluate the
different notions of linearity with respect to fundamental deep results that hold in

the crisp case. The final goal is to gain deeper insight into the principles of existing
linearity axioms in order to have clear arguments pro and contra their use, not
only in connection with fuzzy orderings, but also in more general settings in fuzzy

preference modeling.

2 Fundamental Properties of Crisp Orderings

In order to clear up notation, let us briefly recall classical orderings (let us synony-
mously use the terrarisp for Boolean, classical, or non-fuzzy). Throughout the
whole paper, assume that the symKalenotes an arbitrary non-empty set.

Definition 1 A binary relation< on the seiX (i.e. a two-place predicate on the
product seX x X) is called(partial) orderingif and only if it fulfills the following
three axioms (for alk,y,z € X):

Reflexivity: X <X
Antisymmetry: (X SYAYSX) = X=y
Transitivity: (x<yAny<z = x<z

Definition 2 A binary relation{)> on X is calledcompletdf and only if
XOyvy o x (2.1)

holds for any pairx,y € X. An ordering fulfilling completeness is calldohear
ordering

Since this will be important in the following, let us briefly note that (2.1) is equiv-
alent to

X¢y = yox (2.2)

Completeness is just a simple axiomatization of a property which has a much
deeper meaning in logical and algebraic terms. In particular, there are three es-
sential aspects of relationship between arbitrary orderings and linear orderings:



[SZP] Any partial ordering can be linearizd&zpilrajn’s Theorem)31]: For
any partial orderings, there exists a linear ordering which extendsS
in the sense that, forally € X,

XSY = X2V (2.3)

[INT] Any partial ordering can be represented as an intersection of linear or-
derings [11]: For any partial ordering, there exists a family of linear
orderings(=)iel such that< can be represented as (for aly € X)

xSy & Axziy.
i€l
[MAX] There is a one-to-one correspondence between linearity and maximality:

An ordering< is linear if and only if there exists no non-trivial extension,
i.e. the only orderingx fulfilling (2.3) is < itself.

These three fundamentally important correspondences will serve as the criteria for
evaluating fuzzy linearity/completeness axioms in this paper.

3 Fuzzy Orderings

Binary fuzzy relations were proposed to provide additional freedom for expressing
complex preferences that can rarely be modeled in the rigid setting of bivalent
logic [13,15,23,25,26,35]. This is accomplished—as usual in fuzzy set theory—by
allowing intermediate degrees of relationship. This paper assumes that the domain
of truth values is the common unit intenjal 1].

Definition 3 Given a non-empty s, a mappingR: X2 — [0,1] is calledbinary
fuzzy relatioron X.

The considerations in this paper use triangular norms and related operations to
model logical operators and connectives [22, 30].

Definition 4 A triangular norm(t-normfor short) is an associative, commutative,
and non-decreasing binary operation on the unit interval ({&.13 — [0, 1] map-
ping) which has 1 as neutral element.

A well-studied class of fuzzy relations that will also be of central importance for
this paper are so-called fuzzy equivalence relatibriEhey are nowadays widely
accepted as proper fuzzifications of classical equivalence relations [5, 20,21, 25, 26,
32,33,35].

1 Note that various diverging names for this class appear in literature, like similarity rela-
tions, indistinguishability operators, equality relations, etc.



Definition 5 A binary fuzzy relationE on X is calledfuzzy equivalence relation
with respect toT, for brevity T-equivalenceif and only if the following three
axioms are fulfilled for alk,y,z € X:

Reflexivity:  E(x,X
Symmetry: E(x,y

Fuzzy relations only fulfilling reflexivity and -transitivity are callegpreorderings
with respect to t-nornT, for short,T -preordering

This paper addresses the so far most general notion of fuzzy orderings that—in con-
trast to earlier approaches—takes an underlying concept of equality/equivalence
into account [2—4, 19]. This equality/equivalence is modeled by a fuzzy equiva-
lence relation.

Definition 6 Let L : X2 — [0,1] be aT-transitive fuzzy relationL is calledfuzzy
orderingwith respect tol' and aT -equivalencee, for brevity T -E-ordering if and
only if it additionally fulfills the following two axioms for alk,y € X:

E-Reflexivity: E(x,y) <L(XY)
T-E-antisymmetry: T(L(x,y),L(y,X)) <E(x,y)

Before the general concept above was introduced, fuzzy orderings were rather
commonly understood aB-preorderings that additionally fulfill -antisymmetry
[15,35], i.e., for allx,y € [0, 1],

x#y = T(L(xy),L(y,x)) =0.

In order to avoid misunderstandings, let us call this class of fuzzy ordefings
orderings. As easy to observe, Definition 6 still accommodatesderings if we
defineE to be the crisp equality. It turned out that basing fuzzy orderings on the
crisp equality is too restrictive and practically not feasible. A detailed argumenta-
tion is elaborated in [2, 3].

Already in Zadeh's very first paper on fuzzy orderings [35], the fundamental prop-
erty [SZP] is addressed. If the minimum t-norm is considered for modeling tran-
sitivity and antisymmetry (as usual in Zadeh’s early works), [SZP] is guaranteed
to be satisfied. The proof of this result is simple by using the classical Szpilrajn
theorem [31]. A straightforward generalization of this theorem to t-norms with-
out zero divisors was later proved by Gottwald [15]. Although these results seem
encouraging at first glance, they do not provide much insight. Nonchalantly speak-
ing, T-orderings, in particular iiT does not have zero divisors, are almost crisp
concepts. Consequently, [SZP] follows instantly. However, this result relies on the
crispness of the concepts under investigation and is by no means applicable if we
admit a non-trivial concept of fuzzy equivalen@éa Definition 6.



A first serious attempt to investigate [SZP] and [INT] for fuzzy orderings in the
sense of Definition 6 was made byhle and Blanchard [19]. This paper provides

a specific definition of linearity/completeness that has neither become common nor
widely known, as it unfortunately remained unknown to the vast majority of the
fuzzy set community.

The given paper puts the dispersed attempts and approaches existing in litera-
ture into a common perspective. It considers three major approaches to modeling
linearity/completeness—two common in fuzzy preference modeling and the one
due to Hbhle and Blanchard. All three concepts are checked against the three fun-
damental properties. In any case, we say that a given concept of linearity/complete-
ness fulfills one of the three fundamental properties if and only if the property is
satisfied for all domain¥X and all T-equivalence—as a restriction to specific
domains ofT -equivalences would contradict the generic nature of the fundamental
properties in the crisp case. The choice of the logical operators and connectives
is crucial for the specific logical framework under investigation. Where possible,
characterizations are provided which conditions the logical operators and connec-
tives have to satisfy in order to guarantee that a concept of linearity/completeness
fulfills a particular fundamental property.

4 Preliminaries: Fuzzy Logical Connectives

This paper makes fundamental use of triangular norms and related operations. In
order to make this paper as self-contained as possible, we briefly provide the reader
with the most important basics in a consistent notation. For details, the reader is
referred to the literature, e.g [13, 22].

We first give a brief overview of specific properties and important classes of t-norms
that will be essential throughout this paper.

Definition 7 Special properties and classes of triangular norms:

(1) A t-normT is said to havezero divisorsif and only if there exists a pair
(x,y) € (0,1)? such thafT (x,y) = 0 holds.

(2) At-normT is calledArchimedearif and only if, for all pairs(x,y) € (0,1)?,
there is am € N such that

n times

TX... )<y

(3) At-normT is calledleft-continuousf the following holds for allx € [0, 1] and
all families (y;)ic| € [0,1]':

T (x,supyi) = supT (X,Y;)

iel iel



(4) A t-normT is calledstrictly monotondf and only if y < z always implies
T(xy) < T(x,2) (for all x,y,z € [0, 1]).

(5) A strictly monotone and continuous t-norm is cal&tdct.

(6) At-normT is callednilpotentif it is continuous and if, for all pairgx,y) €
(0,1)?, there is am € N such that

n times

T(C.. %) =0

Theorem 8 [22,24,30]A function T: [0,1]2 — [0, 1] is a continuous Archimedean
t-norm if and only if there exists a continuous, strictly decreasing funapion
[0,1] — [0, ] with ¢ (1) = O calledadditive generatasuch that, for all xy € [0, 1],
the following holds:

T(xy) = (min (6(x) +6(y),6(0)) ) (4.1)
The generatop is uniquely determined up to a positive multiplicative constant.

Corollary 9 [13,22]A continuous Archimedean t-norm T is either strict or nilpo-
tent. T is nilpotent if and only i (0) < « holds (for some additive generatd),
otherwise T is strict.

The following four operations are triangular norms, usually called minimum t-
norm, product t-norm, Lukasiewicz t-norm, and nilpotent minimum, respectively:

Tv (%,y) = min(x,y)
Te(xy) =x-y
TL (X7y) = maX(X—I—y— 17 0)
[ min(xyy) ifx+y>1
Tam (%,y) = { 0 otherwise

All four operations are left-continuous, while the first three operations are even
continuous. OnlyT, andT,y do have zero divisorslp and T, are Archimedean,
whereTp is strict andT, is nilpotent. Note thafl,y, although the name would
suggest this, imot nilpotent Moreover, it worth to mention thaly, is the unique
largest t-norm.

Theorem 10 [22, 30] Let (Ti)ic; be a family of t-norms and Ie(t(a;,ei))iel be a
family of non-empty, pairwise disjoint open subintervalfOo1]. Then the follow-
ing function T: [0,1]2 — [0,1] is a t-norm:

Txy) = {3 (@-a) Ti(G=g.4=3) ¥ (xy) € [ai.e)
’ min(x,y) otherwise

The t-norm T is called therdinal sumof thesummandsa;, g, T;), and we write
T = ((&,8&,Ti))iel- Moreover, a t-norm is continuous if and only if it is an ordinal
sum with continuous Archimedean summands.



We use triangular conorms as generalized models of disjunction.

Definition 11 A triangular conorm(t-conormfor short) is an associative, com-
mutative, and non-decreasing binary operation on the unit interval which has 0 as
neutral element.

Usually, only t-norms and t-conorms are considered together which are linked by
means of a generalized de Morgan law. In order to be able to define this, let us
briefly recall generalized negations.

Definition 12 A non-increasing functiolN : [0,1] — [0, 1] fulfilling the boundary
conditionsN(0) = 1 andN(1) = 0 is callednegation

Definition 13 A negation is calledtrict if and only if it is strictly decreasing and
continuous. A strict negatioN is calledstrong or involutive if and only if it is
self-inverse, i.e., for ak € [0, 1],

N(N(x)) = x.

Theorem 14 [13,27]A negation N is strong if and only if there exists an automor-
phism¢ : [0,1] — [0, 1] such that N can be represented as follows (for &, 1]):

N(x) =01 (1-d(x)) (4.2)

Definition 15 A triple (T,S N), whereT is a t-norm,Sis a t-conorm, and\ is a
strong negation, is calledke Morgan tripleif and only if the de Morgan law

S(xy) = N(T(N(x),N(y)))

is fulfilled for all x,y € [0,1]. A de Morgan triple(T,S N) is calledtukasiewicz
triple if T is nilpotent.

Several investigations have shown [15-17] that the most meaningful concepts of
fuzzy implications in logical terms are so-called residual implications. Since this
notion will play a central role in our further investigations, we briefly recall the
basic definitions and properties.

Definition 16 For a left-continuous t-norm T, the residual implicatiorisidefined

as (xy € [0,1]) )
T(x,y) =sup{ue [0,1] | T(u,x) <Vy}.

Lemma 17 [15-17,22]Provided that T is left-continuous, the following holds for
allx,y,ze [0,1]:

(1) T(xy) <z & x<T(y,2)
(@) x<y & T(xy)=1
(3) T(TxY),T(y,2) <T(x2)



Furthermore, Tis non-increasing and left-continuous in the first argument and
non-decreasing and right-continuous in the second argument.

Theorem 18 [13, 22] Consider a continuous Archimedean t-norm T. Then its
residuum can be represented as

T(xy) =0~ (maxd(y) - $(x),0)), (4.3)
whered denotes an arbitrary additive generator of T .
The residual implication also determines a negation in a straightforward way.

Definition 19 Thenegationcorresponding to a left-continuous t-nofims defined
as -
Nt (X) = T(x,0).

Lemma 20 [13] For any left-continuous t-norm T ,1Nis a negation. If T is addi-
tionally nilpotent, N is a strong negation. In this caseyNan be represented as
in (4.2)with ¢ being the additive generator that fulfigg0) = 1.

5 Extensions and the Role of Left-Continuity

All three properties [SZP], [INT], and [MAX] consider extensions of a given fuzzy
ordering. This section is devoted to basic definitions and properties that will be
essential in the following.

Definition 21 Consider twoT -E-orderingsL; andL,. We say that.; extends k

if and only if, for all x,y € X, La(X,y) < L1(X,y) holds. For brevity we denote this
Lo, C L1. We callL; a non-trivial extension of 4 if there exists at least one pair
(x,y) € X2 for whichL(x,y) < L1(x,y) holds, for brevityL, C L;.

It is obvious thatC as defined above is a partial ordering on the[@et]**%, i.e.
it is nothing else but the Cartesian product of the natural linear ordering on the unit
interval with respect to the index S¥tx X = X2.

Definition 22 We denote the up-set, the set of elements larger than or equal to (i.e.
extending) a give -E-orderingL, with

ext(L) = {L"| L"is aT-E-ordering and_ C L'}.

A T-E-orderingL is calledmaximalif and only if it does not have a non-trivial
extension, equivalently, eftt) = {L}.



As the next theorem demonstrates, the applicability of Zorn’s Lemma in the context
of extensions is strictly dependent on the left-continuity of the underlying t-norm.

Theorem 23 Consider a T-E-ordering L. If T is left-continuous, the exfL) has
at least one maximal element.

Proof. We consider an arbitrary linearly ordered sequence ifLéxt.e. a family
(Lj)iel such that

(1) the index set is linearly ordered,
(2) foralliel, L €extL),
(3) Li € Ljwhenever < j.

Now we define (for alk,y € X)

Cixy) = SUPL(x,Y)-
IS
E-reflexivity of L is trivial to prove. For provingl -E-antisymmetry, we have to
take left-continuity into account:

T(L(xy),L(y,x) = T(siglpLi (xvy),SjglpLj(y, X))

= supsupT (Li(x,y),Lj(y,X)) = ()

iel jel
Since the family(Lj)i¢| is linearly ordered, the equality

(*) = S_quT (LI (Xa y)7 Li (ya X))
le
holds, andr -antisymmetry follows from th& -E-antisymmetry of everi;. A sim-
ilar argumentation can be applied to provéransitivity:

T (L0cy).L(5,2)) =T (supli(x.y). supL (1. ))
= siglp?glpT (Li(xy),Lj(v.2)
= SUPT (Li(xY), Li(1.2)
< SiéllpLi (x,2)

=[(x2)

Hence, we have shown constructively that any linearly ordered sequencélii ext
has a supremum in €it). By Zorn’s Lemma, therefore, the existence of a maximal
element in extL) is guaranteed. O



Now we turn to the opposite questions, how severe the difficulties are that arise if
left-continuity is not satisfied.

Proposition 24 Provided that the set X has at least two elements and that T is not
left-continuous, there exists a T-equivalence E and a linearly ordered sequence of
T -E-orderings which does not have a supremum in the set of T-E-orderings on X.

Proof. Assume that a t-norm is not left-continuous, i.e. there existsar (0, 1)
and an ascending sequer{g)ncr such that

T (a1, SUpBn) # SUPT (01, Bn). (5.1)

neN neN

Since
supT (o, Bn) < T (a, supBn)
neN

neN
always holds due to the monotonicity ©f (5.1) implies

supT (o, Bn) < T (a, supBn) < min (o, supBn) (5.2)
neN neN

neN

Therefore, with the notation

y = supT (a, Bn)
neN
we obtain thay < a and that we can choose agsuch that, for alh > ng, Bn >y
holds. Without loss of generality, assume tRat> y holds for alln € N, otherwise
a sub-sequence can be considered.

Now let us consider an arbitrary linear orderiggof the domainX. Such a lin-
ear ordering always exists due to the classical Szpilrajn theorem. We define the
following fuzzy relations orX (for n € N):

1 ifx=y lifx=y
La(xy) = q o ifx=<y E(X’Y):{yotherwise
Bnif x=y

It is easy to see thdt is reflexive, symmetric, and alsb-transitive, therefore, a
T-equivalence. Moreover, dll, are trivially E-reflexive (asy < a andy < 3, for
all n € N). Now consider an arbitrary pa(x,y) € X2. If x=y, T-E-antisymmetry
is trivially fulfilled. Without loss of generality, assunxe< y (otherwise, swag and
y and apply the same arguments), and we obtain

T(Ln(xay)vl-n(y7x)> = T(aan) S SUpT(aaBn) =YY= E(va)

neN

Let us now consider th@& -transitivity of the family (Ly)nen. For that purpose,
consider a triple(x,y,z) € X3. If any two of these three elements are eqUal,

10



transitivity is trivial. Suppose, therefore, that, andz are pairwise different. Since
=<is a linear ordering, it is sufficient to consider the following six cases:

X<y=<Z TELn(x,y),Ln(y,z)g:T(O(,O()SO(:L n(X,2)
X<2zZ=Yy: T (Ln(X,Y),Ln(y,2)) =T (a,Bn) < a =Ln(x,2)
Yy<X<Z T(Ln(%,Y),Ln(¥,2)) = T(Bn,a) < a = Ln(X,2)
y<z=<x  T(La(xy),Ln(¥,2)) = T(Bn,a) < Bn=Ln(x.2)
Z<X=Y: T(Ln(X,¥),Ln(¥,2)) = T(a,Bn) <Bn=Ln(x 2z
Z<Yy=<X T(La(X,Y),Ln(Y,2)) = T(Bn,Bn) < Bn=Ln(X2)

We have shown, therefore, that &l} are T-E-orderings. Since the sequen@g
is linearly orderedl, is a linearly ordered sequence DfE-orderings. It is clear
that the smallest possible upper boundlof)cn is given by the following fuzzy
relation:

1 ifx=y
Cxy)={0d if x<y
(ey) supBn if x -y

neN

Taking an arbitrary paifx,y) € X? fulfilling x <y, we obtain thaf -E-antisymme-
try is violated (by (5.2)):

T(L(xy),L(y,x)) = T(a,5upBn) > supT (a,Pn) = y= E(x,y)

neN neN

Any upper bound for the sequen(a,)nen, therefore, violate3 -E-antisymmetry.
Hence, the sequenddn)ney has no upper bound in €kxt) and, therefore, no
supremum. ([l

Proposition 24 particularly implies that we may run into a situation where Zorn’s
Lemma is not applicable if we consider a t-norm which is not left-continuous.
Since, as we will see later, Zorn’s Lemma is most often the key to extension the-
oremsa la Szpilrajn, it is unavoidable tmestrict to left-continuous t-norms for

the remaining parts of the papelt is worth to mention that this is not a seri-
ous restriction in practical terms. Triangular norms that are not left-continuous
not even allow to build up a most basic structure of many-valued logiek—
monoids [12, 14, 16, 18, 19, 21]. From a strictly logical point of view, therefore,
non-left-continuous t-norms make only little sense in our setting anyway.

Many results in this paper are based on constructing counterexamples for a finite
subdomain. Before we turn to the actual study of different variants of linearity ax-
ioms, we provide a fundamental lemma that allows us to construct counterexamples
on a finite subdomain without losing the validity of the counterexample on a larger
domain.

11



Lemma 25 Assume that we are given a non-empty set X, a T-equivalence E on
X, and a T-E-ordering L on X. Then, for any supersét:XX, there exist fuzzy
relations E and L such that the following holds:

(1) £ is a T-equivalence on Xwvhich extends E to whole X in the sense that
E'|x =E, i.e. E(x,y) = E(x,y) for all x,y € X.

(2) L' is a T-E-ordering on X which extends L to whole X in the sendg =L,
i.e. L'(x,y) = L(xy) forall x,y € X.

Moreover, if L is a maximal T-E-ordering on X, there exists a maximal’T-E
ordering L on X' for which Ll |x = L holds.

Proof. We define

(x,y) ifxeXandyeX
ifx=yé&X
otherwise

(x,y) if xeXandyeX
ifx=y¢&X
otherwise

E'(xy) =

L'(x,y) =

ORI oOoFRMm

It is easy to check tha' is indeed arl -equivalence oX’ andL’ is aT-E’-ordering
onX’. The extension propertids|x = E andL’|x = L are also trivial by the above
definitions. Now assume thatis a maximalT-E-ordering onX. Now apply the
above construction dt’ andL’. Therefore, by Theorem 23, there exist3 &’-
orderingL” on X’ which is a maximal extension &f. Trivially, the restriction of
L”|x must be & -E-ordering which extends. ThenL”|x = L has to hold, otherwise
L would not be a maximal -E-ordering onX. OJ

6 Strong Completeness

A simple concept of completeness of fuzzy relations which is common in fuzzy
preference modeling [1, 8,9, 13] is based on replacing the crisp disjunction in (2.1)
by the maximum t-conorm.

Definition 26 A binary fuzzy relationR on X is calledstrongly completef and
only if the following holds for allx,y € X:

max(R(x,y),R(y;x)) =1

A unique characterization df-E-orderings fulfilling strong completeness is avail-
able, which we repeat first.

12



Definition 27 Let < be a crisp ordering oiX and letE be a fuzzy equivalence
relation onX. E is calledcompatible with<, if and only if the following implication
holds for allx,y,z € X:

XSy < z=E(x2) <min(E(xYy),E(y.2))

Compatibility between a crisp orderirg and a fuzzy equivalence relati@can
be interpreted as follows: The two outer elements of a three-element chain are at
least as distinguishable as any two inner elements.

Theorem 28 [2,3] Consider a fuzzy relation L on a domain X and a T -equivalence
E. Then the following two statements are equivalent:

(i) Lis a strongly complete T-E-ordering.
(i) There exists a linear ordering; the relation E is compatible with such that L
can be represented as follows:

_J1 ifx<y
Locy) = { E(x,y) otherwise (6.1)
As an important consequence of Theorem 28, we obtain that strong completeness
implies maximality.

Proposition 29 For any T -equivalence E, all strongly complete T -E-orderings are
maximal.

Proof. Consider an arbitrary strongly compléteE-orderingL. Assume that there
is a extension of. denotedL’ which is non-trivial, i.e. there is a paig,b) such
thatL'(a,b) > L(a,b). SinceL(a,b), by representation (6.1) is either 1B(a,b),
L(a,b) = E(a,b) < 1 must hold, otherwisk’(a,b) > L(a,b) could not be satisfied.
Since< is linear,b < a must hold, implying-(b,a) = 1 and we obtain

T(L'(a,b),L'(b,a)) =T(L'(a,b),1) =L'(a,b) > L(a,b) = E(a,b)

which contradictd -E-antisymmetry; henck must be maximal. O

Now the question is whether the reverse implication holds, too. The answer, how-
ever, is negative, at least if we consider a t-norm which is smaller than the mini-
mum.

Proposition 30 Assume that E£ Ty, Then, for any set X with at least two ele-
ments, there exists a T-equivalence E and a T-E-ordering L for which no strongly
complete extension exists.

13



Proof. Let us first consider a two-element §atb} C X. SinceT # Ty, there exist
two valuesa, 3 € (0,1) such that

T(a,B) < min(a,p).

Now we construct the following two relations

(1)

where we choose= T(q, B). Itis easy to prove thdt is aT-equivalence oRa, b}
and thal is aT-E-ordering{a, b}. If there was a strongly complete extension.of
it would be possible to lift eithdr(a, b) orL(b,a) to 1. Therefore, the following two
relations are the two smallest possible fuzzy relations which extesid which

are strongly complete:
. (11 . (1la
“=(pr) v-(9)

However, we obtain that both already violdteE-antisymmetry:

T(L*(a,b),L*(b,a)) = T(1,B) =B > min(a,B) > T(a,B) =y=E(a,b)
T(L°(a,b),L°(b,a)) = T(a,1) =a > min(a,B) > T(a,B) =y=E(a,b)

Therefore,L cannot have a strongly complete extension. By Lemma 25, we can
extendE andL to aT-equivalenceE’ and aT-E’-orderingL’, respectively, which

are both binary fuzzy relations on whofe If L’ had a strongly complete extension,
this would imply that als@. has a strongly complete extension—which has already
been proved not to be the case. Therefafes aT-E’-ordering onX which does

not have a strongly complete extension. O

Proposition 30 states that [SZP] is not fulfillable for strong completendsgify, .
Trivially, if we have aT-E-orderingL for which no strongly complete extension
exists, [INT] cannot hold either, since it is not possible to reprekeat the inter-
section of strongly complete extensions if such extensions do not exist. Moreover,
[MAX] does not hold either, since a maximal extension exists fot.glby Propo-
sition 23), even for those for which no strongly complete extension exists.

It remains open so far whether the same problems occu=fTy, is considered.
The following fundamental lemma provides the basis for a full answer.

Lemma 31 Consider a ;-equivalence E. A T-E-ordering is maximal if and only
if it is strongly complete.

Proof. Let us assume thatis aTy-E-ordering which is maximal but not strongly
complete, i.e. there exists a p&i; b) such that (a,b) < 1 andL(b,a) < 1. Without
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loss of generality suppose thiata, b) < L(b,a), otherwise we can swagandb.
Now we define the following binary fuzzy relation &h

L'(x,y) = max(L(x,y), min(L(x,b),L(a,y)))

L’ is E-reflexive, since it trivially extendk. In order to provely -E-antisymmetry,
we have to consider the following inequalities (taking into account that min and
max distribute):

It is sufficient to show that no argument of the above maximum excEéxly),
which is trivial for min(L(x,y),L(y,x)), sinceL is Ty-E-antisymmetric. In order to
show the three other inequalities, let us mention that the equality

E(x,y) = min(L(xy),L(y,X))

holds (which is easy to prove by mergiigreflexivity andTy-E-antisymmetry).
That implies that eithelr(x,y) or L(y,x) must equaE(x,y). Let us first assume that
L(x,y) = E(x,y). This immediately implies that

min (L(x,y),L(y;b),L(a,x)) < E(xy).
Moreover, as a consequencelgf-transitivity, we obtain

min (L(y,x),L(x,b),L(a,y)) < L(a,b) = E(a,b),
min (L(x,b),L(a,y),L(y,b),L(a,x)) < L(a,b) =E(a,b).

If E(a,b) < E(X,y) holds, we are done. Otherwise Hfa,b) > E(x,y) holds, we
have

SinceE(a,b) > E(x,y),
() =min(L(x,b),L(a,y)),
which then implies

min (L(y,x), L(x.b),L(ay)) < E(xy),
min (L(x,b),L(a,y),L(y,b),L(a,x)) <E
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The converse caddy,x) = E(x,y) can be proved analogously.

In order to prove that’ is Ty-transitive, let us consider distributivity of minimum
and maximum again:

Tu (L'(%,y),L'(,2)) = min (max(L(x,y),min(L(x, b),L(a,y))),
max(L(y,z),min(L(y,b),L(a, Z))))
= max( min(L(x,y),L(y,2)),
min(L(x,y),L(y,b),L(a 2)),
min (L(y,2),L(x,b),L(a,y)),
min (L(x,b),L(a,y),L(y,b),L(a, Z)))

min (L(x,y),L(y,2)) <L(x,2) <L'(x,2)
min (L(x,y),L(y,b),L(a,2)) <min(L(x,b),L(a,2)) <L'(x,2)
min (L(x,b),L(a,y),L(y,2)) <min(L(x,b),L(a,2)) <L'(x,2)
min (L(x,b),L(a,y),L(y;b),L(a,2)) < min(L(x,b),L(a,b),L(a,2))
< min(L(x,b),L(b,a),L(a,2))
<L(x,2) <L'(x,2)

Thereforel’ is aTy-E-ordering which is an extension bf Since

L'(b,a) = max(L(b,a),min(L(b,b),L(a,a)))
=max(L(b,a),1)
=1>L(b,a),

L is a non-trivial extension df which contradicts the maximality df.

The reverse implication—that strong completeness implies maximality—has al-
ready been proved by Proposition 29. O

Lemma 31 proves [MAX] for strong completeness for the special Tasely . As
a direct consequence, we obtain that [SZP] holds as well.

Theorem 32 (Szpilrajn Theorem for Ty, -E-orderings) Suppose that E is ayF
equivalence. Then any,TE-ordering has a strongly complete extension.

Proof. For a givenTy-equivalenceE and aTy-E-orderingL, Theorem 23 guar-
antees the existence of a maximal extensioh.dfemma 31 then proves that this
extension is strongly complete. O

16



The above Szpilrajn-like theorem makes inherent use of Zorn’s Lemma, therefore,
the result is purely existential. Note that, in the case ¥h&t a finite set, there is a
constructive answer and an efficient algorithm for computing all possible strongly
complete linearizations of a gively, -E-ordering [28].

The question remains whether [INT] can be fulfilled for the case Ty. The
following theorem gives a unique characterization of th§geE-orderings which
can be represented as intersections of strongly complete extensions.

Theorem 33 Let E be a J;-equivalence on some domain X and let L be,aEF-
ordering. Then the following two statements are equivalent:

(i) There exists a family of strongly completg-E-orderings(L;)ic; such that
the following representation holds:

L(X7 y) = IIrE]If Li (X7 y)

(i) Forallx,ye X, L(x,y) € {E(x,y),1} holds.

Proof.

()=-(i)): Assume that (i) holds, i.e. thatis an intersection of strongly complete
extensions. Now choose an arbitrary paiy € X. If L(x,y) = 1, we are done.
Conversely, assume thiatx,y) < 1. Then there exists are | such that.(x,y) <
Li(x,y) < 1 is satisfied. Sincé; is strongly completel;(y,x) = 1 must hold.
Then, fromE-reflexivity andTy-E-antisymmetry oL, we obtain

E(x,y) <L(xy) <Li(xy) =min(Li(x,y),Li(y,x)) <E(xy),

i.e. thatL(x,y) = E(x,y) holds.
(i)=-(1): We choose the index set in the following way:

| = {(a,b) € X?|L(a,b) =E(a,b)}
Then, for any paifa,b) €1,
E(a,b) =L(a,b) <L(b,a)
holds. Now we define a fuzzy relatidn , as
Lab(X,y) = max(L(x,y),min(L(x,b),L(a,y))).

Analogously to the proof of Lemma 31,y is a Ty-E-ordering which is an
extension oL and the following holds:

Lab(a,b) = max(L(a,b),min(L(a,b),L(a,b))) =L(a,b) =E(a,b)  (6.2)
Lab(b,a) = max(L(b,a),min(L(b,b),L(a,a))) =1 (6.3)
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By Theorem 32, there exists at least one strongly complete extensigmn dfet
us choose one such extension and denote it Wit Sincel; , fulfills Ty -E-
antisymmetry as well,

E(a7 b) = min( ;,b(a7 b)v ;.,b(b’ a)) - min( ;b(aw b)71) - L;b(a’ b) 2 E(aa b)
must hold. The proof is completed if we succeed to prove the equality

L(xy) = (In)f Lan(X,Y)-

Let us choose an arbitrary pait y). If L(x,y) = 1, thenL; ,(x,y) = 1 must hold
as well, since alL; ,, are extension of. Conversely, |1L(x y) = E(x,y) holds,
then we havéx,y) € | and, by (6.2),

E(x,y) =L(x,y) = L)’;y(x, y) > - m)f Lab(x y).

The reverse inequality

L(xy) < inf Lap(%.y)
(ab)el ™

holds in any case, since &lf , are extensions df. O

In order to complete the answer to the question whether [INT] holds for strong
completeness in the ca3e= Ty, let us consider a domai¥ with at least two
elements and choose two different elemenésdb from X. Moreover, we choose
two valuesa, 3 € (0,1) such thatr < 3 holds and define the following two binary
fuzzy relations:

1 ifx=y 1 ifx=y
a if(xy) =(ab e
Lxy) =0 8 TR Exy={a if{xyl={ab}
7y - ) :
. 0 otherwise

0 otherwise
It is easy to prove thdE is a Ty-equivalence and that is a Ty,-E-ordering. Ob-
viously,L(b,a) = B ¢ {E(b,a),1} = {a,1}, therefore, Theorem 33 implies that
cannot be represented as an intersection of strongly complete intersections, which
finally proves that [INT] does not hold for strong completeness in the Tasdy,
either.

Remark 34 Note that [INT] holds in a weak sense for all left-continuous t-norms
T.In[33], itis proved that the following two statements are equivalent for all binary
fuzzy relationd. on a domairX:
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(i) LisaT-preordering.
(i) There exists a family oX — [0,1] mappings(fj)ici such that the following
representation holds:

L(x,y) = infT (fi(x), fi(y)) (6.4)

i€l
It is easy to see (by Lemma 17) that all components of the intersection

T- (fl (X)v fi (y))

are strongly complet&-preorderings (a type of binary fuzzy relations often called
fuzzy weak ordering4,8,13]). Since & -E-ordering is obviously & -preordering,

this representation holds in our framework, too. However, the results in this section
have shown, that it is not possible in general to represemEaordering as the
intersection of strongly complete fuzzy relations which also fulfill all three axioms
of T-E-orderings.

7 T-Linearity

In this subsection, we consider a type of fuzzy completeness which is based on
the idea of generalizing (2.2) to the fuzzy case by replacing the Boolean comple-
ment by the negatioiNy induced by the residual implication of the underlying
left-continuous t-nornT [19].

Definition 35 Let T be a left-continuous t-norm. A binary fuzzy relation is called
T-linearif and only if the following holds for alk,y € X:

Nt (L(xy)) =T (L(xY),0) < L(¥:X)
The following fundamental theorem provides the basis for proving that [SZP] and

[INT] are preserved fol -linearity.

Theorem 36 [19] Consider a T-equivalence E, and a T-E-ordering L. Then,
for any pair (a,b) € X2, there exists a T-linear extension 42 L which fulfills
L(a,b) = Lap(a,b).

As a trivial consequence we obtain an appropriate linearization theorem, i.e. aresult
showing that [SZP] holds foF -linearity.

Corollary 37 (Szpilrajn Theorem for T-linearity) [19] Given a T-equivalence
E, any T-E-ordering has a T -linear extension.

Moreover, as another consequence of Theorem 36, we can also show that [INT]
holds forT-linearity, too.
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Corollary 38 [19] Consider a T-equivalence E. Then, for any T-E-ordering L,
there exists a family of T-linear T-E-orderingk;)ic; such that L can be repre-
sented as the intersection of all,LLe., for all xy € X,

L(x,y) = infL, (X,Y).

Proof. We choosé = X2, and for every(a,b) € I, letL,}, denote an extension of
L for whichL(a,b) = L, p(a,b) holds (existence guaranteed by Theorem 36). Then
the equality

L(x,y) < inf Lap(x,y) < Lxy(Xy) =L(Xy)

[
(ab)el
must hold, which completes the proof. O

It remains to clarify the correspondence betw&elmnearity and maximality.

Corollary 39 Let E be a T-equivalence and L be a T-E-ordering L. If L is maxi-
mal, i.e.ext(L) = {L}, then L is T-linear.

Proof. Assume that. is maximal. By Corollary 37, there existslalinear exten-
sion ofL. SincelL is its only possible trivial extensioh, must beT -linear. O

As we will see next, however, the reverse does not hold in general which implies
that the fundamental property [MAX] cannot be preservedifdinearity.

Proposition 40 For all domains X with at least two elements, there exists a T-
equivalence E and a T-E-ordering L which fulfills T-linearity, but which is not
maximal.

Proof. Let us choose an arbitrarye (0,1). Due to (2) in Lemma 17\t (a) < 1
holds. IfNy(a) < a holds, denot@ = a, otherwise choosp = Ny (a). In the latter
case,

B=Nr(a)>a

which implies [ is non-increasing in its first argument; cf. Lemma 17)

Nt (B) < Nr(a) =B.
Hence, in any casé\t () <  holds. Now let us define the following two fuzzy
relations:

1 ifx=y _
L(X7 y) - { B OtherWise E(X7 y) - L(X, y)
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It is trivial to prove thatE is a T-equivalence and thatis aT-E-ordering. Since

Nt (B) < B holds,L is T-linear. Since we can choose an arbitrary linear ordering
< on X (existence again guaranteed by the classical Szpilrajn Theorem), we can
define the following fuzzy relation;

, 1 ifx=xy,
L'(xy) = { B otherwise.

It is routine matter to prove thdt' is a T-E-ordering which is obviously a non-
trivial extension ofL. ThereforeL cannot be maximal. O

Nonchalantly speaking, this means tAatinearity is, in any case, a property that
is “strictly weaker” than maximality. This is particularly true if the t-nofimdoes
not have zero divisors. Let us consider the negatpn

Nr(x) = T (x,0) = sup{u e [0,1] | T(u,x) < O}

If x > 0, thenu = 0 is the only value for whicii (u,x) = O can hold. Therefore,
any t-norm without zero divisors induces the so-calt@ditionistic negationalso
known asGodel negation
1 ifx=0
N ={ g

otherwise

In such a caseT -linearity only means that, for a fixed pdi,y) € X2, L(x,y) =0
implies L(y,x) = 1; however, if minL(x,y),L(y,x)) > 0, L(x,y) andL(y,x) may
take any values frorf0, 1] without violating T -linearity.

8 S-Completeness

Now we study a generalization of strong completeness which is also well-known
in fuzzy preference modeling [13]. It is simply based on replacing the disjunction
in (2.1) by a general t-conorm.

Definition 41 Let S be a t-conorm. A binary fuzzy relatioR on X is calledS-
completdf and only if the following holds for alk,y € X:

S(R(x,y),R(y,x)) =1

In principle, it is possible to consider any t-cononSince we are examining

the completeness axioms in the framework of fuzzy orderings, it seems reasonable
(and this is also usual even in more general settings in fuzzy preference modeling)
to assume a certain structural compatibility between the underlying t-ficamd
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the t-conorm under consideration. For the remaining section, therefore, assume that
(T,S N) is a de Morgan triple for some strong negathén

As the first important result, we obtain a full answer to all our questions for the case
thatT does not have zero divisors.

Lemma 42 Provided that T does not have zero divisors, S-completeness is equiv-
alent to strong completeness.

Proof. Assume that an arbitrary binary fuzzy relatiBis S-complete, i.e.

S(Rx,Y), R ) = N(T(N(RxY)), N(RY, %) ) = 1
SinceN is a strictly decreasing continuous bijection,

T(N(R(Y),N(RYX))) =0

holds. Sincel does not have zero divisors, eitiéfR(x,y)) = 0 orN(R(y,x)) =0
must hold, which implies eitheR(x,y) = 1 or R(y,x) = 1. The fuzzy relatiorR,
therefore, is strongly complete.

The reverse implication follows trivially from the fact that the maximum is the
smallest possible t-conorm, therefore, strong completeness is a stronger property
thanS-completeness. O

Proposition 43 Assume that T does not have zero divisors. In the caseTy,
the properties [SZP] and [MAX] hold. If B Ty, none of the three fundamental
properties holds.

Proof. Trivial by Lemma 42 and the results in Section 6. O

In particular, this entails th&&completeness does not allow any of the three fun-
damental properties for strict t-norms—including the important prodpl.cNow

let us approach t-norms with zero divisors. In the first step, we consider t-norms
inducing a strong negation.

Lemma 44 Consider a t-norm T such thatiNs a strong negation. Provided that
Sis chosen as

S(x,y) = Nr (T(Nr(x),Nr(y))), (8.1)
then S-completeness is equivalent to T -linearity.
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Proof. Consider a binary fuzzy relatioR and fix two arbitrary elementgy € X.
Then, for the paifx,y), (8.1) is equivalent to

Nr (T (Nr (ROY), Nr (R, X)) ) = 1
SinceNy is a strong negation, this is equivalent to
T (Nr (ROGY)),Nr (R(Y X)) = 0. (8.2)
Due to the residuation principle, i.e. (1) in Lemma 17, (8.2) is equivalent to
Nr (R(xY)) < T (Nr(R(Y.X)),0) = Nr (Nr (R, X))). (8.3)
SinceNy is supposed to be strong, we finally obtain that (8.3) is equivalent to
Nt (R(x,Y)) < Nr (Nt (R(Y,X))) = R(Y,X)

which is exactlyT -linearity for the pair(x,y). Since this holds for all pair&x,y),
S-completeness is equivalentTalinearity. O

Theorem 45 Under the assumption thatiNs a strong negation and that we use
N = Ny, the fundamental properties [SZP] and [INT] hold for S-completeness.

Proof. Follows directly from Lemma 44 and the results in Section 7. O

The class of t-norms inducing a strong negation includes all nilpotent t-norms (cf.
Lemma 20), most importantly the tukasiewicz t-nofm Moreover, Theorem 45

is also applicable to so-calledlpotent Zadeh triple$6, 7], i.e. de Morgan triples
(Tn, Sn, N) whereN is a strong negation and whefg and Sy are defined as fol-
lows:

[ min(xy) if y> N(x)
Tnxy) = { 0 otherwise
[ max(x,y) if x<N(y)
SNxy) = { 1 otherwise

This class also comprises the nilpotent minimtij for N(x) = 1—x.

It remains to study what happenslifdoes have zero divisors andN\f# Ny (N =
Nt can only be fulfilled if T induces a strong negation, anyway). The following
theorem provides a sufficient condition for the fulfillment of [SZP] and [INT].

Theorem 46 Consider a T-equivalence E. If N Ny holds, i.e. Nx) < Nr(x) for
all x € [0,1], S-completeness fulfills [SZP] and [INT].
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Proof. Consider an arbitrary-linearT-E-orderingL on X, i.e., for allx,y € X,

Nt (L(xy)) < L(%,%).

Assuming thalN < Nt holds, we obtain (using (5) from Lemma 17)

T(N(L(x,¥)),N(L(y,x))) <T(NT(|-( ,Y)) ('—( Y, )))

—

< T(LY.X), T(L(y.x),0)) =

which implies

S(LOGY), LX) = N(T(N(LO6Y))N(L(:X)) ) =N(0) = 1.

ThereforeN < Nr is a sufficient condition thak -linearity impliesS-completeness.
Then [SZP] is satisfied, as Corollary 37 guarantees thatTaiyordering has a
T-linear extension which is automaticalfrcomplete ifN < Ny holds. Analo-
gously, anyT-E-ordering can be represented as the intersectioh-lnfiear T-E-
orderings (cf. Corollary 38). IN < Nt, the components of this intersection are also
S-complete. Hence, also [INT] is satisfied in case that N. O

It remains to clarify whethex < Ny is also a necessary condition for the fulfillment
of [SZP] and [INT] byS-completeness.

Lemma 47 Assume that X has at least two elements. If there istan(0,1)
such that Na) > Nr(a) and additionally N(Ny(a)) = a holds, there exists a
T-equivalence E and a maximal T-E-ordering L which is not S-complete.

Proof. N(a) > Nr(a) implies
a=N(N(a)) < N(Nt(a)).

Now consider an arbitrary two-element $atb} C X and define the following two
fuzzy relations or{a, b}:

(3v) e (39

Obviously,E is the crisp equality which is trivially &-equivalence. It is, moreover,
easy to see that is aT-E-ordering, wherd -E-antisymmetry follows from (5) in
Lemma 17:

T(L(a,b),L(b,a)) = T (a,Nr(a)) = T(a,T(,0)) =0
Now consider the following:

T(N(L(a,b)),N(L(b,a))) = T(N(a),N(Nr(a))) > T (N(a),a) = ()



SinceNr(a) = T(a,0) is the largest valug for which T(a,B) = 0 holds and
N(a) > Ny (a), we obtain thatx) > O; therefore,

S(L(a,b),L(b,a)) = N(T(N(L(a, b)), N(L(b, a)))) <N(0) =1,

i.e. L is aT-E-ordering which is noS-complete. Once again recall thgt (a) =

T (a,0) is the largest valu@ for which T (a,B) = 0. That implies that no larger
value forL(a,b) thanNy(a) can be chosen without violating-E-antisymmetry.
Analogously,a = Nt (Nt (a)) = T (N (a),0) is absolutely the largest valygefor
which T(B,Ny(a)) = 0. Hence, no larger value fdr(b,a) thana may be cho-
sen without harmingd -E-antisymmetry. Thereford, is a maximalT -E-ordering

on {a,b}. By Lemma 25, we are able to extehdo a maximalT-E’-orderingL’

for which L'|¢; 5y = L holds, whereE’ denotes the crisp equality ok Thenl’
cannot beS-complete either, sinc&-completeness is already violated for the pair
(a,b). O

Theorem 48 Let X have at least two elements. If there iscag (0,1) such that
N(a) > Nt (a) and additionally N (Nt (o)) = o holds, S-completeness fulfills none
of the three fundamental properties.

Proof. With the assumptions that there is are (0,1) such thatN(a) > Nt (a)

and thaiNt (Nt (a)) = a is satisfied, Lemma 47 states that thereTs@qguivalence

E and a maximal -E-orderingL which is notS-complete, which already disproves
[MAX]. What particularly follows is that nd&s-complete extension exists for tHis
which disproves [SZP]. The fundamental property [INT] cannot be satisfied either
if there exists n&G-complete extension at all. O

The additional requirememy (Nt (a)) = a in Lemma 47 and Theorem 48 is not
as strong as it might appear at first glance. First of all, if the underlying t-fform
induces a strong negation, this requirement is fulfilled anyway. This also implies
that [SZP] and [INT] are fulfilled for Lukasiewicz triples if and only i < Nr.

The same is true for nilpotent Zadeh triples.

This line of argumentation is even valid for all continuous t-norms with zero divi-
sors that are not nilpotent. It is easy to see taking Theorem 10 into account that a
continuous t-norm can only have zero divisors if there is a sumnf@ng, T;) such
thata; = 0 andT; is nilpotent. If T itself is not nilpotentg < 1 must hold andNy
obeys the following representation:
ifx=0
Nt (X) = { N, (é) if xe (0,8)
otherwise

(@R OR
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For any strong negatioN, which is of course a strictly decreasing continuous map-
ping, there exists aa € (0,&) such thalN(a) > . As easy to see,

Nr (o) = &Ny () < @ < N(@)

Taking into account thall; is a strong negation (sindgis nilpotent), we obtain

NT(NT(C()) :ei-NTi (%) :a'NTi(NTi(§>> :a~g:(1.

Hence, ifT is a continuous t-norm with zero divisors that is not nilpotent, the con-
ditions of Lemma 47 and Theorem 48, respectively, can be satisfied which implies
that none of the three fundamental properties can hold.

If T, no matter whether continuous or not, does not have zero divisors, the inequal-
ity Nt (Nt (a)) = a can never be fulfilled for ao € (0,1); instead, Proposition 43
clarifies the whole situation in an exhaustive way.

We can summarize these findings about continuous t-norms in the following way:

e If T =Ty, Scompleteness is equivalent to strong completeness and the funda-
mental properties [SZP] and [MAX] are fulfilled.

e If T is nilpotent,S-completeness fulfills [SZP] and [INT] if and only M < Nr.

e For all other continuous t-norms, none of the three fundamental properties can
be fulfilled.

e Some questions remain open for non-continuous, but left-continuous, t-norms
with zero divisors that do not induce a strong negation. Such t-norms exist of
course [22], but they can be considered rather exotic objects of minor practical
relevance.

9 Maximality

We are now in the following situation: strong completeness implies maximality, but
not vice versa (except far = Ty ; cf. Propositions 29 and 30 and Lemma 31); max-
imality impliesT-linearity, but not vice versa (cf. Corollary 39 and Proposition 40).
On the one hand, this entails that strong completeness is too strong a property to ful-
fill any fundamental properties (except for= Ty ). On the other hand;-linearity

fulfills [SZP] and [INT], but is too weak a property to fulfill [MAX]. It remains un-
clear whether there is an appropriate concept of fuzzy linearity/completeness “be-
tween” strong completeness andinearity which maintains all three fundamental
properties. As fulfillment of [MAX] would be nothing else but the equivalence of
maximality with this respective property, we can now treat maximality as a concept
of fuzzy linearity/completeness in its own right. It is clear then by Theorem 23 that
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[SZP] is guaranteed to be fulfilled. The only problem remains whether maximal-
ity has a reasonable axiomatization, i.e. a simple criterion which allows to check
whether a give -E-ordering is maximal or not.

It is clear that a natural upper bound for extensions bf@a-orderingL is given by
T-E-antisymmetry. Following this line of thought, we are able to provide a suffi-
cient condition for maximality.

Lemma 49 Let E be a T-equivalence. If a T -E-ordering L fulfills

L(xy) =T (L(y.%),E(x.Y)) (9.1)

for some pair(x,y) € X2, every extension’LD L fulfills L’(x,y) = L(X,y).

Proof. T-E-antisymmetry implies by the residuation principle (Equivalence (1) in
Lemma 17) that

L(xy) < T (LX), E(XY).
Using the definition off, Equality (9.1) can be written as

L(xy) =sup{ue [0, 1] [ T(u,L(y,x)) <E(xy)}.

Assume a non-trivial extensidrl O L to exist. IfL'(x,y) > L(x,y) held, this would
imply that
L'(x,y) > sup{u € [0,1] | T(u,L(y,x)) <E(xy)},
i.e. that
T(L'(y),L'(%x) 2 T(L'(xy), LX) > E(xY).
This contradicts td -E-antisymmetry. Hence,'(x,y) = L(x,y) must hold. O

Theorem 50 If a T-E-ordering L fulfills(9.1) for all pairs (x,y) € X?, L is guar-
anteed to be maximal.

Proof. Follows trivially from Lemma 49 by considering all paifs,y). O

The question remains whether the reverse is true as well, i.e. whether the fulfillment
of condition (9.1) for allx,y € X is also a necessary condition for maximality. The
following theorem gives a negative answer. Even worse, we obtain that maximality
cannot be axiomatized in the usual way by considering pairs of elements only.

Theorem 51 Consider a domain X with at least four elements and assume that
there exists a valuea € (0,1) such that

o=T(a,T(a,0)). (9.2)
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Then there exists a T-equivalence E such that maximality of T-E-orderings is not
decidable by considering pairs of elements only.

Proof. Let us denoté = T(a,a). We consider an arbitrary four-element subset
X' ={a,b,c,d} C X and define the following two binary fuzzy relations ¥h

llaa 18B8B
L Blaa E_ Blap
oaalp | Ba1lp
aall BRBR1

It is easy, yet tedious, to check thatis a T-equivalence and thdt is a T-E-
ordering onX’. Now we prove that is maximal. Suppose that there isTaE-
orderingL’ which is a non-trivial extension df. There are 10 pairs of elements
(x,y) € {a,b,c,d}? for which L(x,y) < 1 holds, at least for one of theli(x,y) >
L(x,y) must be satisfied. For the six pairs

L(a,c) =L(a,d) =L(b,d) =L(c,a) =L(d,a) =L(d,b) =a
we have, taking (9.2) into account,
L()(,7)/) =a= -T- (G,T(G,a)) = -T- (G7B> = -T- (L(ylvxl)7 E(Xl7y))
with (X,¥) € {(a,c), (a,d), (b,d), (c,a),(d,a), (d,b)}. Then Lemma 49 yields that
these six values are maximal and cannot be lifted, since a larger value would imme-
diately deterioratd -E’-antisymmetry. Fot (b,a) = L(c,d) = B, the same is true,
because ot (a,b) = L(d,c) = 1. So, onlyL’(b,c) or L’(c,b) remain to be poten-
tially extensible. Assume that(b,c) =y > a. L’ must beT -transitive, therefore,
L'(a,c) > T(L'(ab),L'(b,c)) =T(Ly) =y>a.
This implies
T (L/(av C)7 L/(C7 a)) 2 T (L/<aa C)7 L<C7 a)) = T(V,CX) = (*)
Equality (9.2) can be rewritten as

a=sup{uc[0,1] | T(u,a) < T(a,a) =P}

Asy> q, (%) > B must follow, which contradict$ -E-antisymmetry. Analogously,
assume.’(c,b) =y > a and consider

L'(d,b) > T(L'(d,c),L'(c,b)) =T(Ly) =y>a.
Using the same argument as above, it is obtained fftab) cannot be lifted either.

ThereforeL is a maximalT -E-ordering or{a,b,c,d}.
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If maximality was decidable by considering pairs of elements only, any restriction
of L to a two-element subset of would have to be maximal as well. However,
this is not the case here, since restricting(to= {b,c} yields the following:

la la
L|{b,c} = (G 1> E‘{b,c} = (CX 1)

Obviously,L |, ¢y is not maximal, since we may lift, .d-| ¢} (b,¢) to 1 without
violating any requirement.

Hence, we have shown that, for any four-element set, there existscauivalence

E such that maximality cannot be characterized by an axiom involving only pairs of
elements. Now we consider the whole dom&inLemma 25 guarantees that there

is aT-equivalenceE” on X such thatE”|(ap 4y = E and that there is a maximal
T-E"-orderingL” on X that extendd. such thal.”|apcq; = L. The restriction of

L” to the subsefb, c} gives the same result as shown above, which proves that the
maximality of L” cannot be decided on the basis of considering pairs of elements
independently. O

The condition that a valua € (0,1) fulfilling (9.2) exists is a merely technical
prerequisite for the construction of the counterexample in the proof of Theorem
51. First of all, Theorem 51 cannot applicablelte= Ty as strong completeness is
an axiomatization of maximality (cf. Lemma 31) that only takes pairs of elements
into account. Clearly, the conditions of Theorem 51 cannot be satisfidd-forfy,,
since, for every value € (0,1), Ty (a,a) = a holds, which implies

Ty (0, Tu(a,@)) = Ty (a,a) = 1.

It remains to clarify which other t-norms satisfy this condition. For that purpose,
let us consider the following lemma.

Lemma 52 For a given left-continuous t-norm T, the following two statements are
equivalent:

(1) There exists an € (0,1) fulfilling (9.2).
(2) There exists 8 € (0,1) such that the mapping fx) = T (x,B) (for x € [0,1))
has a fixed point.

Proof. Let us first assume that anc (0,1) fulfilling (9.2) exists. With the setting
B=T(a,a), fs(x) =T (x,T(a,a)) holds. Then (9.2) implies thatis a fixed point
of fg.

§

Conversely, assume thaae (0,1) exists such that mappinfg has a fixed point.
We denote this fixed point with anda = fg(a) = T (a,B) holds. Then, on the one
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hand, (5) in Lemma 17 implies
T(a,0) =T (a,T(a,B)) <P (9.3)

On the other hand, applying the residuation principle (cf. (1) in Lemma 17) to the
trivial inequality T (a,a) < T (a,a) yields that

o <T(a,T(a,a)),

always holds. Now taking into account that the residual implication is non-decreas-
ing in the second argument (see Lemma 17), this implies together with (9.3)

T(o,T(o,a) <T(X,B)=0a <T(a,T(a,a))

which proves (9.2) and we are done. O

Lemma 52 allows to prove the condition of Theorem 51 for virtually any common
t-normT # Ty:

e Theorem 51 works for any left-continuous t-norm with zero divisors whose nega-
tion Nt has a fixed point (witfs = 0). This particularly includes all t-norms in-
ducing a strong negation, comprising all nilpotent t-norms and nilpotent Zadeh
triples.

e If at-normT is strict, the representation (4.3) holds, and for any choidé ®©f

(0,1)
fa(0) =T (x,B) = o~ *(max($(B) — 9(x),0))
is a non-increasing continuous mapping wWigi3) = 1 and fg(1) = 3. Hence,
there exists an € (3,1) which is a fixed point offg.
e Assume thafl is a ordinal sum((a&;,&,T;))ic|. If there is at least one left-con-
tinuous summanda;, g, T;) for which ana; fulfilling (9.2) exists, then choose
o =a + (g —a)-0; and we obtain

T (o, T(o,a))
=sup{ue[0,1] | T(u,a) <T(a,a)}
=sup{ue [0,1] | T(ua+(a—a)-ai) <a+(e—a) Ti(aj,ai)}
= (%)
Asa <a+ (e —a)- Ti(aj,a;) < g itis sufficient to consider only valuasc
&, e, i.e
(x) =sup{uc [a,&] | T(u,a + (& —&)-ai) < a+ (& —a) Ti(aj,a0)}
=sup{u€ [a,e]|a+ (g —ai)~Ti(u:2,on) <a+(g—a)- Ti(aj,a)}
=a+(gq—a)-sup{ve [0,1] | Ti(v,a;) < Ti(ai, o)}
=a+ (& —a)- T (o, Ti(a,0))
=a+ (&6 —&)- ai
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which proves (9.2) fox. This particularly entails that all continuous t-norms
T # Ty satisfy the conditions of Theorem 51.

Theorem 51 states that the fundamental property [MAX] cannot be maintained if
we consider completeness axioms like (2.1) of (2.2) which both consider pairs of
elements only, except for strong completeness in Tasd),. Maximality is a kind

of “global” property. In the crisp case, fortunately, maximality remains characteri-

zable by a “local” axiom which only involves pairs of elements. Theorem 51 shows
that this nice characterization is lost in the fuzzy case except for the minimum t-
norm.

10 Summary and Conclusion

This paper has been concerned with evaluating three concepts of fuzzy linear-
ity/completeness with respect to the three fundamental properties [SZP], [INT],

and [MAX]. The findings can be summarized as follows (see Table 1 for a tabular

overview):

Strong completeness:this variant provides reasonable results for the minimum t-
normTy. In this case, [SZP] and [MAX] are fulfilled. A characterization of those
Tw-E-orderings which admit a representation as intersection of strongly com-
plete Ty -E-orderings in the sense of the [INT] property has been given.H#

Tw, none of the fundamental properties is preserved. Strong completeness, there-
fore, can only serve as an appropriate fuzzy concept of linearity/completeness if
T = Ty. Otherwise it is meaningless.

T-linearity: the approach proposed byHle and Blanchard provides preservation
of [SZP] and [INT] for all left-continuous t-norms. [MAX], however, cannot be
satisfied.

S-completeness:in casel = Ty, Scompleteness coincides with strong complete-
ness (see above). Tf does not have zero divisors orTifis a continuous t-norm
that is not nilpotent, none of the three fundamental properties is preserved. In
case thal induces a strong negation, [SZP] and [INT] are preserved if and only
if N < Ny. If N= Ny, Scompleteness anb-linearity are equivalent. The mech-
anisms underlying these findings are always the resulfE4orearity. From that
point of view, Scompleteness does not provide an essential added value com-
pared toT -linearity.

The first important conclusion that can be drawn from these results if we restrict
to commonly used t-norms (continuous t-norms and left-continuous t-norms with
strong negation}he three fundamental properties cannot be preserved simultane-
ously, no matter which t-norm we choose.
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Table 1
An overview of the results achieved in this paper

S-completeness
where(T,SN) is T-linearity
a de Morgan triple

strong
completeness

Twm [SzP], [MAX] [SZP], [MAX] [SZP], [INT]

other t-norms
without zero none none [SZP], [INT]
divisors (e.gTp)
t-norms inducing a
strong negation none
(e.9.Ti, Tam)

other continuous none none [SZP], [INT]
t-norms

[SZP], [INT],

iff N < Ny * [SZP], [INT]

other
left-continuous none ??7? [SZP], [INT]
t-norms

* In the caséN = Ny, S-completeness anbi-linearity are equivalent.

Secondly, as there is no compact axiomatization of maximality in Tasdy,, the
property [MAX] is not achievable anyway. As this is the property that usually has
the least practical relevance compared to [SZP] and [INFljpearity constitutes

a reasonable compromise that preserves these two properties. Holwénegrity

is a very weak, non-intuitive, and poorly expressive conceptdbes not induce a
strong negation. IT does have a strong negatidnjinearity is not just a compro-
mise, but an almost perfect choice, Bdinearity is equivalent t&-completeness

for N = Nr. This is not just a nice interpretation, it particularly means that even the
two independent fuzzifications of the classical linearity concepts (2.1) and (2.2) are
equivalent. This result can also be understood as another argument supporting the
viewpoint that t-norms inducing strong negations are fundamentally important and
beneficial in fuzzy preference modeling [6, 7,10, 34].
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