
Attribute Value Selection Considering the
Minimum Description Length Approach and

Feature Granularity

Kemal Ince1 and Frank Klawonn2

1 Volkswagen AG, Komponenten-Werkzeugbau
Gifhornerstr. 180, 38037 Braunschweig, Germany

kemal.ince@volkswagen.de

http://www.volkswagen-braunschweig.de/
2 Data Analysis and Pattern Recognition Lab

Ostfalia University of Applied Sciences
Salzdahlumer Str. 46/48, 38302 Wolfenbüttel, Germany

f.klawonn@ostfalia.de,

http://public.ostfalia.de/~klawonn/

Abstract. In this paper we introduce a new approach to automatic at-
tribute and granularity selection for building optimum regression trees.
The method is based on the minimum description length principle (MDL)
and aspects of granular computing. The approach is verified by giving an
example using a data set which is extracted and preprocessed from an op-
erational information system of the Components Toolshop of Volkswagen
AG.

Key words: Minimum Description Length, Granular Computing, Re-
gression Tree, Decision Support, Intelligent Decision Algorithm

1 Introduction

The ideas presented in this paper are motivated by an application in the Compo-
nents Toolshop of Volkswagen AG in Brunswick. This business area is responsible
for producing tools in other divisions of Volkswagen AG for the the serial pro-
duction. The Components Toolshop has approximately 700 members of staff and
includes a 30.000m2 production area so that it can be considered as one of the
biggest tool shops in the world. The product range includes forming tools, (like
gearbox cases and engine boxes), injection moulds, casting moulds and produc-
tion lines and other machined tools.
These tools are denoted in this paper as products. In the Components Toolshop
a very large data set is available describing the different processes of manufactur-
ing the products. This data set is mainly obtained from operational information
systems. A subset of this data set contains the production time of the products.
Every product contains an allocated time δs and an actual time δi which can

2 Kemal Ince and Frank Klawonn

differ from each other. The subset contains additional information on the man-
ufacturing process which is used later in the analysis phase.
This paper describes how a regression tree is built to predict the relative devi-
ation between these two time values. By building the model the regression tree
must fulfill the following two criteria as good as possible:

– The predicted deviation should deviate as little from the true deviation and
– the complexity of the constructed regression tree ∆K should be as small as

possible.

Another aspect which must be considered is that the input values have dif-
ferent granularities. An example is the feature component which specifies the
automotive part, the feature component assembly in which the components are
aggregated and the feature component category in which the component assem-
blies are combined.
It is obvious that identified rules containing features with fine granularity are
less general than rules which are composed of features with coarse granularity.
The developed algorithm has to decide in favour of the feature which delivers
the best result for both criteria described above.
The paper is organised as follows. Section 2 provides a brief overview on the ba-
sics of regression trees and the minimum description length principle. In Section
3, the motivation and discussion of the approach is presented in detail. Section
4 describes how the generated model is evaluated and Section 5 concludes with
a discussion of the results and an outlook on future work.

2 Theoretical Background of Regression Tree and MDL

This section provides a brief introduction to regression trees and the minimum
description length principle. Further details can be found in [1, 2].

2.1 The Regression Tree Idea

Regression is besides classification one of the most important problems in pre-
dictive statistics [1]. It deals with predicting values of a continuous variable from
one or more continuous and/or categorical predictor variables [3]. In general the
regression tree method allows input values to be a mixture of numerical and
nominal values. The output value has to be numerical. The result of this ap-
proach is that a tree is generated where each decision node contains a test on
some input values. The terminal nodes of the tree contain the predicted output
values [4]. In [5] an example is given how to build a regression tree using the
program XMLMiner with an example data set.

The CART algorithm is an example for building classification and regression
trees. This algorithm was developed by Leo Breiman in 1984. An important
property of this algorithm is that it delivers only binary trees. This means every

Attribute Value Selection Based on MDL and Feature Granularity 3

node of the tree is either a terminal node or followed exactly by two successor
nodes [6].
The basic regression tree growing algorithm which is used in the different ap-
proaches works in the following way:

1. The starting point is the initial node which contains the whole data set.
Here, the values mc, the regression value for the node and the error S are
calculated as defined below.

2. If all the points in the node have the same value for all the independent
variables, stop the algorithm. Otherwise, search over all binary splits of all
variables for the one which will reduce S as much as possible. If the largest
decrease in S is less than some threshold δ, or one of the resulting nodes
would contain less than q data objects, stop the algorithm. Otherwise, take
that split and create two new nodes.

3. Go back to step 1, in each new node.

In the above described algorithm S is the sum of squared errors for the
regression tree RT measured as follow:

S =
∑

c∈leaves(RT)

∑
i∈c

(yi −mc)2 (1)

where mc = 1
nc

∑
i∈c yi is the prediction for leaf c [7].

2.2 The Minimum Description Length Principle

The minimum description length principle (MDL) is based on the fundamental
idea that any regularity in a data set can be used to compress it [2]. Compression
means to describe the data set with fewer symbols than the number of symbols
which are needed to describe the data set literally. Such a data set can for
example be described by a decision tree which has fewer symbols as the initial
data set. The more regularities in the data set exist, the more the data set can be
compressed. Folowing this idea, it is possible to understand ’learning’ as ’finding
regularities’ in the data.
Therefore the MDL principle can be used in different ways for inductive inference
such as to choose a model that trades-off the goodness-of-fit on the observed data
set with the complexity of the model (in statistical questions) or in a predictive
interpretation where MDL methods can be used to search for a model with good
predictive performance on unseen data sets [2].
In the following example, the idea is illustrated that learning can be interpreted
as data compression. In the sample below a 2000 bits long sequence S1 is shown,
where just the beginning and the end of it is listed.

′01110011100111001110.....01110011100111001110′ (2)

It seems that S1 is a 400-fold repetition of ’01110’. A decription method which
maps descriptions D in a unique manner to a data set D is needed to compress

4 Kemal Ince and Frank Klawonn

S1. A programming language can be used as description method to carry out the
compression of S1. In the sample below such a computer program is displayed in
the programming language C#. It describes the regularity in S1 and is shorter
than S1 itself.
Example of a computer program in C# describing the regularity in sequence S1

string sequence = "";
for (int i = 1; i <= 400; i++)
{

sequence = sequence + "01110";
}
Console.WriteLine("The sequence = " + sequence);

The example above is very theoretical, since in practical applications such highly
compressible data seldom exist. Usually sequences with lower compressibility
such as described in the sample below are given.

′00110000001100100001.....11001000000100110010000′ (3)

The sequence S2 has a recognizable regularity because it contains approximately
twice as many 0’s as 1’s. But the regularity S2 is more of statistical than of
deterministic character. So it seems possible to find a description which is able
to generate future sequences that is similar to S2.
If we consider that n is the length of the sequence (in both samples above is
n = 2000 bits long), S1 can be compressed to O(log n) and S2 can be compressed
to αn with 0 < α < 1.
This fact allows to make the following case:

∃ D(s) where n(D(s)) ≤ n(s) with s ⊆ S (4)

where S is the initial sequence, s is a subsequence of S, D(s) is the description
of the subsequence s, n(D(s)) is the length of D(s) and n(s) is the length of s.

3 Motivation and Solution

As mentioned initially, in the Components Toolshop of Volkswagen AG different
operational information systems are in use, which are required to support the
manufacturing process. This means several of these systems are concerned with
the manufacturing process directly and some of them, for example organization-
ally attached, indirectly. The application of these systems delivers large amounts
of data which can contain interesting and hidden coherences. It is suspected that
the type of specific events depends on various facts and could not be detected by
a manual inspection of the large data set. The cycle time of a product could, for
example, depend on the milling machine which is used to manufacture it. Due
to this problem data mining approaches were used to detect these coherences in

Attribute Value Selection Based on MDL and Feature Granularity 5

the data.
The considered application area has to deal with data containing divers infor-
mation like the machine on which the product was manufactured, by whom the
product was processed, to which greater category the product belongs etc. These
features are the input values for the decision model which has to be generated.
Furthermore, information about the real time which was needed to manufac-
ture the product δi and the expected time δs which is estimated initially by the
planner are available. The ratio ∆r of these two features constitutes the output
value, which has to be predicted.

∆r =
δi
δs

(5)

Both time values are numerical. Therefore the output value has a continuous
character. Table 1 shows a fictitious data set with the following features:

– The machine which was planned to be used during manufacturing process:
Ms,

– the machine which was used in the real manufacturing process: Mi,
– the machine category of Mi: MCi,
– the component which has to be manufactured: C,
– the component assembly of C: Ca,
– the component category of C: Cc and
– the output value, the ratio between the two time values: ∆r

A row (data object) in the data set to be analysed is characterised by the
above value and the data set might look as in Table 1. Of course, the real data
sets are much larger.

Ms Mi MCi C Ca Cc ∆r

a b B 10201 1020 10 0.76
a a A 10202 1020 10 0.74
a b B 10301 1030 10 0.75
c d D 20301 2030 20 0.44
a c C 20302 2030 20 0.46
Table 1. A fictitious data set.

We need an algortihm to build a regression tree which predicts ∆r. During
building the regression tree, it is necessary to decide which granularity for the
input values makes sense to predict the output value as good as possible. The
simpler the constructed model (regression tree) is and the smaller the errors it
delivers in predicting the output value the better it is. In the following section
we describe our approach of the implemented algorithm in more detail in the
form of pseudo-code.

6 Kemal Ince and Frank Klawonn

Pseudo-code of the combined MDL and RegTree algorithm

program RegtreeMDL (Output)
var

mean; outputValue: double;
meanList: Dictionary<string, double>;
ds: DataSet;
dt1, dt2: DataTable;
dcc: DataColumnCollection;
rows: DataRow[];
colName, colValue, filter: string;

begin
ds = GetInitialData();
for int i = 0 to ds.rows.Count
step

outputValue = outputValue +
ds.rows[i][ds.IndexOf(lastColumn)];

next
mean = outputValue / ds.rows.Count;
meanList.Add("wholeDataSet", mean);
dcc = ds.dt1.Columns;
for int i = 1 to dcc.Count - 1
step

colName = dcc[i].ColumnName;
dt2 = SelectDistinct("tbl_AttValue",ds.dt1,colName);
for int j = 0 to dt.rows.Count
step

colValue = dt.rows[j]-ItemArray[0];
filter = colName + " LIKE " + colValue;
rows = ds.dt1.Select(filter);
for int k = 0 to rows.Count
step

outputValue = outputValue +
rows[k].ItemArray[rows[k].ItemArray.Length - 1];

next
mean = outputValue / rows.Count;
meanList.Add(colName + " _ " + colValue , mean);

next
next
for int i = 0 to meanList.Count - 1
step

if SumOfFailureRegtree(meanList[i]) <=
SumOfFailureRegtree(meanList[i+1])

then break;
else

Attribute Value Selection Based on MDL and Feature Granularity 7

next
end

The above pseudo-code describes the functionality of the implemented algorithm.
In first step, the mean of the initial data set is calculated. First the numbers
of rows in the data table dt1 is identified. For each row in rows the sum of
the outputV alue is computed. Finally the mean of the numeric output value is
calculated by using the sum of the output values and dividing it by the num-
ber of rows. Afterwards, in the second step all other possibilities for splitting
are calculated. Therefore, all the columnNames of the input values have to
be considered. The codomain of the input values are identified by using these
columnNames. In the following step, these columnNames and codomains were
used to filter the data set and calculate the means for the subset. The last loop
of the algorithm deals with the method SumOfFailureRegtree() to calculate,
in which step the algorithm delivers the ’best’ result and has to terminate.

4 Validation with generated data

In this section, a brief example is given, how the algorithm handles the data
and which results it delivers. Therefore, the input value A with the value set
A = {a1, a2} is defined. The output value Z consists of continuous values. In
this fictitious case we define the target value Z as follows:

Z =
{

+
∆

2
+R(0, 1),−∆

2
+R(0, 1)

}
with R(0, 1) constituting a minimal random noise between 0 and 1 and ∆ is a
constant. Furthermore it is suggested that both values of A occur equally often
in the whole data set. In Table 2 such a data set is displayed.

A Z

a1 +∆
2

+R(0, 1)
a2 −∆

2
+R(0, 1)

a1 +∆
2

+R(0, 1)
a2 −∆

2
+R(0, 1)

a2 −∆
2

+R(0, 1)
a1 +∆

2
+R(0, 1)

Table 2. Abstract data set containing random noise.

A regression tree for this simple data set can have the following two forms
displayed in Figures 1 and 2. The first tree delivers the arithmetic mean x = 0.
The error F1 in predicting Z is

F1 =
∆

2
+R1(0, 1)+

∆

2
+R2(0, 1)+

∆

2
+R3(0, 1)+

∆

2
+R4(0, 1)+

∆

2
+R5(0, 1)+

∆

2
+R6(0, 1)

8 Kemal Ince and Frank Klawonn

= 3 ∗∆+
6∑
i=1

Ri(0, 1)

Provided that the random noise Ri(0, 1) is close to zero, the error F1 becomes

F1 = 3 ∗∆

The length of the regression tree L1 is 0. It has only one predicting value 0 which
is generaly valid for the whole data set. The MDL-value M1 consists of the sum
of F1 and L1. The result is that the MDL-value of the first tree is

M1 = F1 + L1 = 3 ∗∆.

Fig. 1. Regression tree with one node including the whole data set and predicting Z
as x = 0.

The second regression tree delivers a model which separates the data set into
two subsets. The error in predicting Z in this case is

F2 = R1(0, 1) +R2(0, 1) +R3(0, 1) +R4(0, 1) +R5(0, 1) +R6(0, 1)

=
6∑
i=1

Ri(0, 1)

Provided like above that the statistical noise Ri(0, 1) (almost) zero, the error
becomes F2 = 0. To get the MDL-value the length of the regression tree L2 is
needed to be calculated. ∣∣∣∣∆2

∣∣∣∣+
∣∣∣∣−∆2

∣∣∣∣ = ∆

The MDL-value of the second tree is calculated as followed.

M2 = F2 + L2 = ∆.

Because of minimizing the MDL-value a split like described by the second re-
gression tree below makes sense.

The above considerations are only valid when the noise is small compared to
the constant ∆. When the noise becomes larger, the more complex decision tree
might not be favoured anymore. Let ∆

2 be the predicted value of the model and
assume ∆ = 0.002 and therefore ∆

2 = 0.001
In binary code this means

(0.002)2 = 0.0000000010000011

Attribute Value Selection Based on MDL and Feature Granularity 9

Fig. 2. Regression tree with one root node and two leafs.

and
(0.001)2 = 0.0000000001000001

If the noise has the value N = 0.123

N = 0.123→ (0.123)2 = 0.0001111101111100

0.001 + 0.123 = 0.124

The sum of both binary values is calculated in binary coding as follows:

0.0000000001000001
+ 0.0001111101111100

0.0001111110111101

The error is much higher than the difference between the prediction of the ∆.
This means every bit in the predicted value has to be corrected so that the de-
viation in the predicted ∆ is not relevant any more.

5 Conclusion

Decision support is getting more and more important even for industrial applica-
tion areas such as the Components Toolshop. It has a wide range of topics where
the field of building models by generating decision and regression trees is a less
but itself established detail. If only the aspect of minimizing the predicting error
is considered, the model might exhibit a very high complexity. Additionally con-
sidering the fact to reduce the complexity of the model delivers a result, which
can be used to answer universally valid questions in decision support. With the
described approach the possibility to select automatically the ’best’ input values
by predicting a continuous output value is accomplished. This approach can be
adapted in different analysis problems to resolve decision support problems.

References

1. Wei-Yin, Loh: Classification and Regression Tree Methods. In: Encyclopedia of
Statistics in Quality and Reliability, pp. 315–323. Wiley-VCH, (2008)

10 Kemal Ince and Frank Klawonn

2. Grünwald, P.: A Tutorial Introduction to the Minimum Description Length Princi-
ple.Centrum voor Wiskunde en Informatica, Netherlands.

3. Overview Classification and Regression Trees, http://www.statsoft.com/

textbook/classification-and-regression-trees/

4. Online Help of XMLMiner, http://www.resample.com/xlminer/help/Index.htm
5. Example of a Regression Tree, http://www.resample.com/xlminer/help/rtree/

rtree_.htm

6. Wikipedia The Free Encyclopedia, http://de.wikipedia.org/wiki/CART_

(Algorithmus)

7. Shalizi, C.: Classification and Regression Trees. In: 36-350 Data Mining, Lecture 10.
(2009)

