
Finding the Intrinsic Patterns
in a Collection of Time Series

Anke Schweier, Frank Höppner

Ostfalia University of Applied Sciences
Dept. of Computer Science, D-38302 Wolfenbüttel, Germany

Abstract. With most approaches to pattern discovery in time series
the notion of a pattern is defined a priori and then an algorithm for
the efficient discovery of patterns is proposed. But finding the intrin-
sic patterns in a collection of time series may require a search for the
best pattern representation, too. For one dataset it may be important
to consider absolute points in time, for other datasets only the shapes
may be of interest. With some datasets reoccurring subseries match the
pattern closely and with others only loosely. We propose an MDL-based
approach to search not only for patterns, but for the intrinsic pattern
representation. The preliminary results of this unsupervised method are
promising, because in the examined (supervised) datasets the identified
representations led to patterns that discriminate between classes.

1 Introduction

The ubiquity of sensor technologies (e.g. in mobile phones) and the affordability
of storage capacities attract more and more companies to continuously record
and store data. Prominent examples are ‘open microphones’ in new Android
phones to continuously identify user commands or to create a play-list of all
songs you (incidentally) came across today (www.shazam.com). Many daily ac-
tivities (like driving a car) are potentially interesting (for the car manufacturer
or insurance company) such that one may suspect that your car “likely has a
black box spying on your already” [3]. Without necessarily sharing the visions
behind these applications, the examples demonstrate that temporal data (such
as time series) become increasingly popular and common.

To explore a collection of time series, it is helpful to summarise the series
somehow, that is, to identify subseries that repeat often (within the same series
or across different series). Such patterns can, however, be perceived in many
different ways: using absolute time points (“driving to work at 6:30 in the morn-
ing”), shapes (“sharp increase followed by sudden drop”), etc. And to identify
reoccurring patterns another important aspect is the accuracy of the matching
step: do we have to carve out patterns exactly or only vaguely in order to find
repeating occurrences? Most approaches from the literature define the type of
patterns they are going to discover, but do not consider a search for the best
pattern type. In this preliminary work, we investigate the possibility of identi-
fying the intrinsic patterns in a collection of time series, that is not only the

patterns but the conditions under which they expose best, with the help of the
minimum description length (MDL) principle.

The paper is organised as follows: In the next section we review MDL and
related approaches from the literature. Then, Section 3 gives an overview of the
approach and the considered pattern representations. The algorithmic approach
is covered in Section 4. Using different datasets from the UCR time series repos-
itory [6] the experimental evaluation is presented in Section 5. Finally, Section
6 concludes the paper.

2 Definitions and Related Work

A time series T of lengthm is an ordered sequence of real values T = (xi)i=1...m ∈
Rm. In principle, any xi may have arbitrary precision, but we assume that num-
ber are discretized to k different values (as suggested in [4]).

Minimum Description Length Principle. The description length DL(T) of series
T is the number of bits required to encode T . Depending on the type of encoding
DL(T) will vary. Assuming k = 16, a naive, direct calculation of DL(T) requires
4 bits per value, amounting to DL(T) = log2(k) · m. If we use different code
lengths lx to encode value x, we arrive at DL(T) =

∑m
i=1 lxi

. We may obtain
such a variable-length code from Huffman coding [5], which assigns shorter codes
to more frequently occurring values, thereby minimising the overall code length.

Rather than a direct encoding of all values in T , a compact representation or
approximation of T may help to further reduce the description length. Instead
of the original time series T , a model M may be encoded using DL(M) bits
(depending on the type of model used). As the intention of the model is to
approximate the original data, there is a loss of precision when considering model
M instead of the original series T . To allow a lossless reconstruction of T , we
have to encode the differences between model M and original series T , too. In
total, the description of T via model M requires DL(M) bits for encoding the
model plus DL(T |M) for a full reconstruction of T given the model:

DL(T,M) = DL(M) +DL(T |M)

If a model M captures the main characteristics of the series T well, using model
M as an intermediate step may pay off in terms of the total description length,
that is, we may observe DL(T,M) < DL(T). Figure 1 illustrates such a situ-
ation. Encoding the series T of length 30 directly (4 bits per value) amounts
to 30 · 4 = 120 bits. The Huffman code assigns codes of length 3 to the more
frequent values and 4 to the less frequent values, amounting to 97 bits in total.
An adaptive piecewise constant approximation (APCA) of T is shown in Figure
1 (red line). This model may be represented by a series of pairs denoting the
point in time at which the segment starts and the value that holds within the
segment:

M = ((1, 3), (17, 15), (25, 8)) (1)

Fig. 1. An example time series.

long@0, med@2, med@1 med@2, med@1, med@0

long@4, long@2, med@0vlong@0, med@3, med@2

a) 3 values, 3 durations (short, medium, long)

b) 5 values, 5 durations (vshort, short, med, long, vlong)

0

1

2

4

3

2

1

0

Fig. 2. Depending on the discretization, a
pattern may or may not show up.

With a direct encoding (still assuming k = 16 different values and 24 points in
time) we get (when ignoring the first time point as it is fixed to 1): DL(M) =
3 · log2(16) + 2 · log2(24) ≈ 22 bits. To reconstruct the original series T , we still
need the deviations from the model:

∆M (T) = (2, 1, 0, 0, 1, 2,−2,−2,−1, 0,−1,−1, 0,−1, 0,−2, 1, 0, 0,−1, 0, 0, 1,−1, ...

In this example, the delta series consists of five values only (−2,−1, 0, 1, 2) and
may be (naively) encoded by 3 bits per value (DL(T |M) = 90) or less when using
Huffman coding (DL(T |M) = 65). In either case, the total description length
DL(M)+DL(T |M) became smaller, because the model M captures T very well,
such that the deviations can be encoded more efficiently. To save even more bits,
we may choose a coarser granularity kM for the model than the granularity kT
used for T and ∆(T).

To find the inherent structure of T , the MDL principle advocates to search
for the best encoding [2]. In [4] a range of possible models is constructed1 for a
given time series T . The model with the minimal description length successfully
identified the best-suited model for T .

Sequitur. To identify chunks of repeating segments we will use Sequitur [9],
which is a string compression algorithm that constructs a context-free grammar
from a text string and a compressed representation of the input string using
non-terminal symbols of the grammar. For instance, the input sequence aabaab
would be compressed to XX with two rules X → Y b and Y → aa (using capital
letters for non-terminals). Sequitur has been used in [7] to derive patterns (gram-
mar rules) from a symbolic approximation (SAX [8]) of time series. The greedy
algorithm has several nice properties (e.g. a new non-terminal is introduced only
if it can be used at least twice for the compression of the input sequence) and

1 e.g. adaptive piecewise constant approximations (APCA), piecewise linear approxi-
mation (PLA), discrete Fourier decomposition (DFT), etc.

linear runtime complexity. As in [7], we will use Sequitur to compress segment
series.

Time Series Patterns. Usually approaches to time series pattern discovery define
some distance measure between subseries and apply a sliding window approach
to compare subseries within the same or between different series (cf. [1,7] and ref.
therein). Such approaches assume, for instance, that the position of a pattern in
time is not relevant and/or that the pattern does not exceed the window length.
It is also common to perform a z-score normalisation of time series, thereby
losing the capability of focusing patterns on exact slopes or exact values. In this
work, we want to avoid such assumptions and investigate if the MDL principle
can reveal the circumstances under which patterns show up prominently.

3 Outline of the Idea

We assume a set T of time series is given, not necessarily all of the same length.
We want to investigate, how the idea of finding a best representation of a single
series by MDL from [4] can be successfully extended to the problem of finding a
set of rules or patterns for a whole set of time series. While in [4] the raw data
were the time series and the models were the APCA representations (amongst
others), we start with APCA-transformed series, which take the role of raw data
now. We use the term segment series for a given APCA model to emphasise that
they become the raw data and to avoid confusion with the patterns that will
serve as models hereafter.

A model is a condensed, lossy representation of the original segment series.
Since we encode all segment series rather than just one, we hope to benefit
from similar subsequences within the same and across different segment series.
Once such re-occurring subsequences have been identified, we encode them as
part of our model and refer to them rather than encoding them multiple times.
The search for the best representation involves two aspects: (1) Similar to the
different types of time series approximation (piecewise constant, piecewise linear,
etc.) we can think of different segment representations that lead to different
types of patterns (see below). (2) Secondly, for any kind of representation, we
may consider two segments as being sufficiently similar (to match each other) if
they become identical under some discretization.

Figure 3 shows two segment series (dashed blue line and dotted red line). We
consider a number of possible representations for a given segment:

ATAV: The most direct representation of a segment series is (ti, xi)i=1...m where
ti is the starting point in time of the ith segment and xi its value (ATAV:
absolute time, absolute value) as used in (1). Then, two segment series
share a common subsequence only if they are aligned in both dimensions
simultaneously. The dotted red and dashed blue series in Fig. 3(top left)
share the segment series drawn in black.

ATAV: (19,7) (23,6) RTAV: (+5,4) (+5,6)

ATRV (7,+2) (13,+2) RTRV (+5,+2) (+5,+2)

Fig. 3. Two segment series and (some) shared segments in various representations.

RTAV: Rather than encoding absolute time points, the tuples may store only
relative time (duration), together with the absolute value (RTAV: relative
time, absolute value). Identical subsequences may then appear at different
positions in time but have identical values (top right).

ATRV: Similarly, relative values of the time series may be stored (keeping ab-
solute time points). Identical subsequences then occur at the same point in
time and change by the same amount in their value (lower left).

RTRV: Finally, both values may be encoded relatively to the previous segment.
The segment itself is then interpreted as a vector (additionally drawn in the
lower right image). Identical subsequences occur at different points in time
and at different values, but keep the same shape.

We consider all pattern types as potentially useful. If the time series at hand
are speed profiles recorded from car drivers (speed at time t, t = 0 at start of
journey), we expect characteristic speed levels to reoccur in patterns (speed lim-
its). To discover driving patterns, RTAV may thus be the best representation.
Air pressure time series recorded at similar weather conditions (e.g. stormy)
may occur at different levels of air pressure but usually exhibit similar slopes, so
RTRV might be the best segment representation. When examining the effect of
marketing effort on product orders over time (t=0 for start of sales promotion),
we may observe characteristic lags between an increase in sales figures depending
on the involved marketing channels, so ATRV may be a the appropriate repre-
sentation. ATAV may be considered as the least interesting representation, as it
corresponds to a 1:1 match of subseries. We do not consider it in this paper due
to lack of space.

Regarding the matching of patterns, we consider two segments as matching
if their discretized versions become identical. This is illustrated in Figure 2 for
RTAV: Using a discretization into three values and three durations the sequence
“(medium length, value 2), (medium length, value 1)” occurs in both examples
(top row), but we observe no repetition at a finer granularity.

We want the MDL principle to identify the representation that characterizes
a given dataset best. We will employ Sequitur to identify the patterns, so the
Sequitur outcome (grammar and compressed sequence) corresponds to the model

Algorithm 1

Require: T set of time series, maximal temporal granularity kT and value gr. kV
Ensure: Best pattern representation (e.g. RTRV) and time/value discretization

1: best =∞
2: S = {S | T ∈ T , construct segment series S from an APCA representation of T}
3: for all segment representations R (ATRV, RTAV, ...) do
4: Let S ′ be the set of segment series S in representation R
5: for all considered segment discretizations (k1, k2) ∈ N≤kT × N≤kV do
6: D = {D | S ∈ S ′,D is the (k1, k2)-discretized segment series S}
7: merge consecutive segments in segment series of D ∈ D
8: find Sequitur model M (grammar and cseq) from craw
9: if DL(M) + DL(T |M) < best then

10: best = DL(M) + DL(T |M), store R, k1, k2
11: end if
12: end for
13: end for
14: return best representation (stored R, k1, k2)

and defines DL(M). The difference between the Sequitur model and the set T
determines DL(T |M).

4 Algorithmic Approach

We propose a simple approach (cf. Algorithm 1) to find the best patterns from
a set of time series. A pattern is a subsequence of segments (encoded in alter-
native ways) at a given resolution (alternative discretizations of segments). The
hypothesis is that the inherent properties of the series can be best exploited by
the pattern representation that leads to a minimal description length for the
whole set of series.

4.1 Preprocessing the series

As already mentioned, T denotes a set of time series (x1, . . . , xn) of varying
lengths. Each time series is transformed into a piecewise constant approximation
(using e.g. [4]), where the length of each segment may vary (line 2 of Algorithm
1). All further processing is done upon these APCA representations. As this ap-
proximation is performed for each time series individually, each series may come
up with a different set of discrete values to approximate the original series. From
the approximations, a segment series S′ = ((a1, b1), . . . , (am, bm)) is constructed
for each series S, where ai denotes absolute or relative temporal information
and bi absolute or relative time series values, depending on the currently chosen
segment representation (see page 4).

The next step (line 4) performs a discretization of the segments, which in-
volves the discretization of both tuple values into k1 and k2 discretized values,

resp., such that we deal with at most k := k1 · k2 different discretized segments.
For any choice of ki we divide the range of values into ki equally sized intervals.
We refer to a discretized value of x or t by putting it into squared brackets [x]
or [t]. It may happen that two consecutive segments become similar after dis-
cretization such that they are better represented by a single segment (likely to
happen if the APCA granularity is high but the current segment representation
is coarse). If and how segments are merged depends on the chosen representation:

RTAV: Two consecutive segments (∆t1, v1) and (∆t2, v2) may refer to the same
discretized value v = [v1] = [v2] and are merged into one segment (∆t1 +
∆t2, v).

ATRV: Two consecutive segments (t1, ∆v1) and (t2, ∆v2) having the same dis-
cretized time point t = [t1] = [t2] are merged into a segment (t,∆v1 +∆v2).

RTRV: We interpret a segment (∆t,∆v) as having a slope of ∆v
∆t for ∆t time

units; so we merge consecutive segments (∆v1, ∆t1) and (∆v2, ∆t2) to (∆v1+
∆v2, ∆t1 +∆t2) if both segments encode the same (discretized) slope.

Finally any segment series S = ((a1, b1), . . . , (am, bm)) ∈ S ′ has been trans-
formed to a discretized series D = (d1, d2, . . . , dm′) ∈ D with |D| = k1 · k2 =: k,
m′ ≤ m. For simplicity, we use numbers 1, 2, . . . , k to refer to the available types
of discretized segments. Two subseries with similar but different APCA represen-
tations may now, depending on the discretization parameters, appear identical
after discretization and merging (cf. Figure 2).

4.2 Finding the model

Sequitur shall be used to identify re-occurring subsequences of segments. As
the discretized segments are represented by numbers, patterns correspond to
sequences in {1, . . . , k}. Let us denote a tuple concatenation operator by •,
i.e., (a, b, c) • (d, e) = (a, b, c, d, e). With di denoting the ith discretized series,
the full set D of m series is encoded into a single sequence (over the alphabet
{−m, . . . ,−1, 1, . . . , k}):

craw := d1 • (−1) • d2 • (−2) • d3 • (−3) · · · dn

The negative numbers serve as separators between the encoded segment series.
As Sequitur requires a symbol to occur at least twice before introducing a rule,
these separators effectively prevent Sequitur from elaborating rules that connect
symbols from the end of series di and the beginning of series di+1. Such rules
would depend on the (arbitrary) order of series di and are therefore undesired.

The code craw represents the input to Sequitur. Sequitur delivers a grammar
based on a set of new (non-terminal) symbols, which we encode also by numbers
(starting at k + 1). A rule of the grammar thus reads like A→ BC where A,B
and C are numbers. A represents a non-terminal (thus A > k) and B (as well as
C) may refer to a terminal symbol (discretized segment; 1 ≤ B ≤ k) or another
non-terminal symbol (B > k). Sequitur also delivers a compressed sequence cseq

from which the original sequence craw can be reconstructed by replacing non-
terminals with the resp. right-hand side of its rule. All separators s < 0 (e.g.
(−1), (−2) from craw above) in cseq may be removed completely or replaced
by a single separator symbol (0) to preserve the separation of the series (but
different symbols were only necessary to prevent Sequitur from deriving rules
that link different series). Thus, if the grammar consists of r rules, the output is
a sequence over the alphabet A = {0, 1, . . . , k + r} (≤ k: discretized segments,
> k: non-terminals).

For instance, we obtain craw = (1, 3, 2, 4,−1, 1, 2, 4, 3,−2, 3, 1, 2, 4) from three
discretized sequences d1 = (1, 3, 2, 4), d2 = (1, 2, 4, 3) and d3 = (3, 1, 2, 4). Se-
quitur may deliver two rules 5→ 24 and 6→ 15 (with new non-terminals 5 and
6), leading to cseq = (1, 3, 5, 0, 6, 3, 0, 3, 6). This procedure is carried out for all
considered discretizations and all considered pattern representations in line 8 of
Algorithm 1.

4.3 Calculating DL

The description length of the model consists of the Sequitur grammar and the
compressed collection of sequences. We encode this as follows: (1) the number
r of rules, (2) the right-hand side of all rules (no separation necessary because
the right-hand side of a Sequitur rule has always 2 symbols), (3) the compressed
sequence cseq. We use a Huffman code to obtain minimal coding costs.

Secondly, we have to determine the difference between the original segment
series S and the model. Let us ignore the merging step of line 7 for the moment.
The Sequitur compression can be reversed to arrive at the original sequence craw,
so we have to encode the differences between the discretized segments of craw
and the original segments of S ′. We apply the same pointwise differencing as
described for the case of time series in section 2: If the original segment series is
S = ((1, 4), (7, 2), (17, 15), (25, 8)) and the time points and values are discretized
to {1, 5, 10, 15, 20, 25, 30} and {2, 6, 10, 14}, resp., we obtain

D = ((1, 6), (5, 1), (15, 14), (25, 10))

and ∆D(S) = ((0,−2), (2, 1), (2, 1), (0,−2)).

The better the discretization adopts to the segments occurring in S, the shorter
DL(S|M). Again, a Huffman code is used to encode ∆D(S).

The merging of segments in line 7 is necessary to join segments that were
considered different in their APCA representation but become identical under
the currently applied segment discretization. Without such a merging step, we
have as many original as discretized segments (1:1 relationship), but merg-
ing may reduce the number of discretized segments. Thus, from a single en-
coded segments in craw we may have to reconstruct multiple original seg-
ments in S ′. For example, if S = ((1, 4), (7, 2), (15, 14), (17, 15), (25, 8)) is dis-
cretized to ((1, 6), (5, 1), (15, 14), (15, 14), (25, 10)) and subsequently merged to
((1, 6), (5, 1), (15, 14), (25, 10)), we have to keep in mind which segments were

merged in order to calculate ∆D(S) correctly:

S = (1, 4) (7, 2) (15, 14) (17, 15) (25, 8)
D = (1, 6) (5, 1) (15, 14) (25, 10)
∆ = (0,−2) (2, 1) (0, 0) (2, 1) (0,−2)

There are multiple ways to encode how many segments of ∆ belong to a single
segment of D: either we include counts for the number of ∆-segments belonging
to the next D-segment or we insert a special “glue” symbol (g) between ∆-
segments belonging to a merged D-segment:

counts: 1(0,−2) 1(2, 1) 2(0, 0)(2, 1) 1(0,−2)
glue symbol: (0,−2) (2, 1) (0, 0)g(2, 1) (0,−2)

5 Experimental Evaluation

We examine three datasets to evaluate whether the identification of intrinsic
patterns via MDL is viable: (1) a (one-dimensional) random walk dataset, (2)
the CBF dataset consisting of short time series from three different classes (de-
scribing a cylinder, a bell and a funnel) and (3) the symbols dataset consisting
of 6 different hand-drawn symbols on a touchscreen. The latter two datasets are
taken from [6]. These datasets have been chosen for the first experiments because
the random walk should not contain any particular patterns (by construction)
while the other two datasets are known to contain patterns (cf. [6]).

By the term configuration we refer to both, the chosen pattern type (e.g.
RTRV) and the granularity used for time and value discretization. Once Algo-
rithm 1 has identified the best configuration, how do we know if this representa-
tion succeeded in capturing the patterns inherent in the time series collection?
The CBF and symbols dataset have class labels, so we investigate if the discov-
ered rules correlate with class labels. The algorithm is not aware of the class
labels, but we expect intrinsic patterns to correspond to class-specific subseries.
For rules of the grammar that apply to at least 5% of the series, we qualitatively
examine their entropy. For each class, we report the rule with the lowest entropy.

Table 1 shows the results for all three datasets. The smallest total descrip-
tion lengths (per pattern type) are shown in column total. In all three datasets,
the configuration with the smallest total length is of type RTRV. However, for
the random walk and CBF dataset, only a few patterns (meeting the 5% usage
threshold) were found for RTRV configurations. The minimal cost configuration
does not seem to be a good indicator to identify the intrinsic pattern represen-
tation. We attribute this observation to the fact, that the RTRV representation
benefits from the smoothness of the considered time series: consecutive segments
are only a few time indices apart and (thanks to the smoothness) the deviation
between consecutive values is also comparatively small. Many small differences
(obtained from relative values) are encoded much more efficiently than absolute
values that distribute more uniformly. This gives RTRV an advantage over RTAV
and ATRV, because two values are encoded relatively rather than just one.

Table 1. Results for the three data sets.

a) random walk best granularity description length reduced
time value model delta total size

RTAV 2 9 6191 69400 75591 40.6%
ATRV 4 2 3352 76603 79955 31.2%
RTRV 6 3 3352 69400 72752 85.4%

b) CBF best granularity description length reduced entropy of best rule
time value model delta total size cylinder bell funnel

RTAV 3 4 6594 40391 47525 37.5% 0.00 0.00 0.00
ATRV 3 2 3898 38063 41961 39.3% 0.49 1.53 0.00
RTRV 2 2 2554 35020 37574 91.1% – 0.98 –

c) symbols best granularity description length reduced entropy of best rule
time value model delta total size 1 2 3 4|5 6

RTAV 3 7 30k 379k 409k 23.8% 0.53 0.96 0.00 0.61 0.00
ATRV 13 2 23k 350k 374k 21.4% 0.95 2.00 0.00 0.11 0.00
RTRV 11 52 67k 259k 327k 45.9% 1.63 0.55 0.57 0.89 0.97

But this affects the encoding of the differences ∆D(S) only (column delta).
The description length of the (compressed) model involves only craw, which is just
a sequence over an alphabet of terminal and non-terminal symbols. To evaluate
how well a configuration supports the ‘compressability’ of craw, we report the
size of the model as a fraction of the size of an uncompressed model (as if
Sequitur delivered an empty grammar for craw) in column reduced size. A smaller
percentage indicates a better compressability of the model and is thus considered
to be a better indicator for the best pattern representation.

The 500 series in the random walk dataset (without class labels) consist of
250 values and start at x1 = 0. Although there are no patterns imputed in
the dataset there may nevertheless be incidental repetitions to be discovered
by Sequitur. RTRV patterns are sequences of “increase by ∆vi within ∆ti time
units”. This representation is useful to approximate the up’s and down’s of the
random walk locally, but due to the random nature of the dataset, a longer series
of certain up’s and down’s is unlikely to repeat itself, so the representation is of
limited use to identify reoccurring patterns (size remains 85.4% of uncompressed
model, cf. Figure 1a). With ATRV we achieve the best model compression: The
temporal granularity of 4 subdivides the time axis into 4 intervals and ∆v takes
only two values (increasing, decreasing). At this configuration, any random walk
consists of a series of length 4 only, a particular series may be described as, e.g.,
’values increase in the first and last quarter, but decrease in the second and
third’. Only 24 different sequences exist, which is exploited by Sequitur. Thus,
the best configuration takes a rather global perspective on the series, which is a
reasonable result for random walk data.

The results for the CBF dataset (900 series, 3 classes) are shown in Table
1b. Only a few short rules are discovered by Sequitur for RTRV with little

connection to the classes. The best model compression was achieved for the
RTAV representation – and it is also the RTAV model which delivered patterns
that best correspond to classes. Relative times are reasonable for CBF, because
the imputed patterns are randomly displaced in time, as well as absolute values,
because all CBF series jumps and linearly interpolates between two values only.

Fig. 4. Examples from the symbols dataset (note the similarity of classes 4 and 5).

However, the APCA approximation of the CBF series are quite short (only
3-5 segments remain per series), which limits the length of discoverable patterns.
This is quite different for the symbols dataset (995 series, 6 classes, cf. Figure 4);
results are shown in Table 1c. This time the optimal RTRV granularity is much
higher and the discovered rules are much longer, non-terminals of the grammar
represent sequences of up to 13 segments. The RTRV model compression is
much more competitive compared to the CBF and random walk datasets, the
best rule (in terms of entropy) for class #2 is of type RTRV. This is due to the
fact that the time series consist of similar shapes that repeat across different
classes and also within series of the same class. The highest model compression
is achieved with ATRV (down to 21.4%). Series from multiple classes have long
up/downward trends, which are also exploited by patterns of type RTAV and
RTRV, but classes 1∪2, 3 and 6 can be easily distinguished if we know where
these trends occur in time. Again, the best configuration provides those patterns
that are most meaningful with respect to class labels.

6 Conclusions

Patterns may disguise themselves in time series in quite different ways. To iden-
tify similar subsequences, the shape of the subsequence may be important, the
position in the time series, their absolute value, etc. No repetition will be exactly
identical, but it is not a priori clear under which resolution patterns will show
up. In this preliminary work we explored if the MDL principle can successfully
be applied to identify the best pattern representation in terms of pattern types

(absolute/relative values) and degree of similarity (discretization granularity).
The preliminary results are promising: Despite the simplistic approach, the con-
figuration that led to the highest model compression always delivered patterns
that correspond best to class labels (which were unknown to the MDL approach).

References

1. T.-C. Fu. A review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, Feb. 2011.

2. P. D. Grunwald. The Minimum Description Length Principle. University Press
Group Ltd, 2007.

3. K. Hill. Hate To Break It To You, But Your Car Likely Has A Black Box ’Spying’
On You Already. http://onforb.es/I7BRLJ, 2012.

4. B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh. Discovering
the Intrinsic Cardinality and Dimensionality of Time Series Using MDL. In Proc.
11th Int. Conf. on Data Mining (ICDM), pages 1086–1091, 2011.

5. D. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Pro-
ceedings of the IRE, 40(9):1098–1101, Sept. 1952.

6. E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. A. Ratanamahatana. The
UCR Time Series Classification/Clustering Homepage, 2011.

7. Y. Li and J. Lin. Approximate variable-length time series motif discovery using
grammar inference. Proceedings of the Tenth International Workshop on Multimedia
Data Mining - MDMKDD ’10, pages 1–9, 2010.

8. J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic
representation of time series. Data Mining and Knowledge Discovery, 15(2):107–
144, 2007.

9. C. G. Nevill-Manning and I. W. Witten. Identifying Hierarchical Structure in Se-
quences: A linear-time algorithm. Journal of Artificial Intelligence Research, 7:67–
82, Sept. 1997.

