
Pattern Graphs: A Knowledge-Based Tool for
Multivariate Temporal Pattern Retrieval

Sebastian Peter∗, Frank Höppner† and Michael R. Berthold∗

∗Nycomed-Chair for Bioinformatics and Information Mining, University of Konstanz, Box 712, 78457 Konstanz, Germany.
†Department of Computer Science, Ostfalia University of Applied Sciences, 38302 Wolfenbüttel, Germany.

Abstract—We introduce a new, powerful query formulation
formalism for complex, multivariate sequence data. The new
query language, termed pattern graphs, is capable of reflecting
more aspects of temporal patterns than earlier proposals. The
underlying graph structure of the pattern graph makes the query
intuitive to use and therefore understandable not only for the data
analyst. We present algorithms to match patterns against data
and demonstrate its usefulness on real data from the automobile
industry.

I. INTRODUCTION

In this paper we propose a query language that enables users
to specify complex patterns over multivariate sequential data
and retrieve matches of such patterns on real data. Although
data mining literature already offers some approaches to
discover patterns in time series automatically, our experience
is that these approaches are often difficult to communicate to
the domain expert and are too limited to express the rich expert
knowledge that already exists. Ignoring the existing knowledge
may initiate excessive data mining, involving time-consuming
manual scanning of results and long discussions regarding pat-
terns that were already known to the expert. Therefore we seek
a pattern language that is easily comprehensible and expressive
at the same time. We focus on multivariate sequential data,
because experts quickly start to connect different aspects in
their argumentation and the pattern should be able to reflect
such connections appropriately.

In the following section we provide an overview of the
related work. In section III we present the notion of a pattern
graph as the query model. Section IV discusses the algorithm
that finds matches of the pattern in multivariate sequential data.
In section V we show the application of our approach on a
real-life problem. We conclude the paper in section VI.

II. RELATED WORK

Many tools exist that deal with univariate time series, for
example [1] presents an approach where the user places rect-
angles in the time-value space to filter those series that do not
pass through these rectangles. Although easy to understand,
the expressiveness of this approach is limited, because the
expert must restrict the time series in the (absolute) value
and (absolute) time simultaneously. Multivariate features (not
necessarily time series only) are often plotted row by row: in
Fig. 1 we can see an example with four properties, where the
black rectangles indicate the periods in time at which some

connect A

connect B

peak load

load increase

Fig. 1. Representation of multivariate, sequential data: the black rectangles
denote the intervals when the predicate (labels to the left) holds.

property holds. The expert may find interesting patterns by
recognising the temporal relationship between feature occur-
rences, rather than expressing their occurrences in terms of
absolute time points. Such a representation has turned out to be
useful, e.g. in the medical domain [2]. Various ways to define

B before A

B meets A

B overlaps A

B is−finished−by A

B contains A

B starts A

B equals A

B

A

Fig. 2. Thirteen possible relationships between two intervals. The inverse
relationships (after ↔ before) have been omitted.

patterns in this notion have been proposed in literature, many
of them relying on Allen’s interval relationships [3] (cf. Fig. 2)
or variants thereof.Some approaches (e.g. [4]) define a pattern
by specifying the exact relationship for every pair of intervals.
In [5] it is argued that a full pattern specification via Allen’s
relationships is overly strict and a partially ordered sequence
of simultaneous (sub-) intervals is proposed. See also [6] for
an overview.

While these different representations have their individual
strengths, they also have their weaknesses: Thinking of pre-
dicting a certain state of some network server (breakdown,
overload, attack, malfunction, etc.) on the history of, say, the
last 24 hours, a situation as simple as “there was only one
connection to server A” (during the last n hours) is hard to
express for the above-mentioned pattern languages. A situation
like “there was a connection to B while the connection to A

was lost” is impossible to represent for approaches that rely on
an explicitly given interval relationship, as the exact position
of B relative to A is not known [4]. Temporal constraints “the
connection to A was lost for at least 4 hours” or “... at most
4 hours” are usually ignored completely or introduced in a
post-processing step. In our earlier work [7] we introduced
temporal constraints to address this problem, but we were still
not able to formulate overlapping temporal constraints such
as “the connection A was lost for at least 4 hours and during
that time connection B was lost for at least 30 minutes”. Such
expressions are, however, frequently used by experts when
arguing about a course of events. The formalism introduced in
the next section addresses these shortcomings using a flexible
graph structure which allows to model parallel dependencies,
partial order of events and provides better support for temporal
constraints.

III. PATTERN GRAPHS

In this section, we formalize the notion of a pattern
graph, which allows to express constraints on the behaviour
of multivariate, sequential data. The pattern graph will be
used to query the given sequential data. We assume that m
attributes (rational, binary or categorical) are given and each
of them has a value range denoted by Dj . By ~s ∈ D with
D = (D1 × · · · ×Dm) we denote all m measurements at one
point in time.

Definition 1 (sequence). A sequence S consists of an arbitrary
number of data vectors (~s1, . . . , ~sn) ∈ S with S =

⋃∞
i=1 D

i.
Thus, S defines the set of all sequences. Let |S| = n denote
the length of the sequence S. The index i of an element ~si
serves as an (integer-valued) time point.

For example a sequence S with attributes A, B and C may
look like this:

A
B
C

(true true false false
3.4 8 19 20
high middle low low

)
A has a boolean value range, B a nominal and C a categor-

ical value range. This series has four data vectors (|S| = 4)
which correspond to the columns of the table.

Definition 2 (Subsequence). A subsequence from index a to
b from the sequence S is defined as S|[a,b].

So the subsequence S|[1,2] consists of the first two columns
of S:

A
B
C

(
true true
3.4 8
high middle

)
A pattern graph is an acyclic, directed graph with one source

(>) and one sink (⊥). The nodes of the graph carry the con-
straints for the sequence. A sequence matches (fits) the pattern
graph if it is possible to assign subsequences from S to all
nodes of the graph (called mapping), so that the subsequences
satisfy the constraints stated by the corresponding nodes. The
assignment has to be complete in the sense, that (1) each

node is given a subsequence, (2) the subsequences assigned to
connected nodes are contiguous, (3) the (empty) prefix of S
is assigned to the source, the (empty) suffix of S to the sink
node.

Semantic. The pattern graph divides the sequence into
several parts and each part has to satisfy the respective
constraints. These parts are represented by the nodes, where
the constraints are given by the nodes value and temporal
constraints. The temporal constraints restrict the length and the
value constraints the behaviour of the respective subsequence.
The edges between the nodes represent the order of the parts.
If a node has an outgoing edge it means that directly after
the associated subsequence there has to be another part that
fulfils the constraints of the successor node. If a node has two
or more outgoing edges, all parts belonging to the following
nodes have to begin at the same time. On the other hand, if a
node has two or more incoming edges all parts belonging to
the preceding nodes have to end at the same time and the part
of the node has to begin directly afterwards.

Graphical representation. Before we can show an example
graph, we have to specify the graphic representation of a
pattern graph. In Fig. 3 we can see the example pattern graph
with the following meanings:

1) The temporal constraint of a node is represented above
the node. We only consider temporal constraints on the
duration in this paper, therefore we show the interval
of valid node durations. A star represents an unlimited
duration.

2) The value constraint(s) of a node are shown inside the
node.

3) If the node has the ’don’t care’-constraint (≡ no con-
straints) the node is labelled ’?’.

[1,*]

D ?

[1,*]

A

[1,*]

B

[1,*]

C ?

[1,*]

?

[1,*]

[1,*]

?

[1,*]

Fig. 3. Example pattern graph with two parallel paths from > to ⊥.

Example. Fig. 4 shows two sequences where the vertical
axis denotes some binary properties A-D that hold over certain
periods of time (black bars, time on horizontal axis). We now
want to show if these sequences can be validly mapped to the
pattern graph in Fig. 3.

The graph shown in Fig. 3 can be decomposed into two
different paths: For the lower path the sequence has to be
divided in five contiguous parts, so that the first part satisfies
the ’don’t care’ constraint, during the second part the property
A has to hold, B in the third, etc. The last part is again a ’don’t
care’-part. All of these five parts require a duration of at least
one time unit (but have no upper bound on the duration). In
parallel to the lower path, the upper path requires ’don’t care’,
’D’ and ’don’t care’ again with durations between 1 and ∞
time units.

(a)

A

B

C

D

200 5 10 15

A

B

C

D

5 10 15 20

(b)

0

Fig. 4. Two example sequences with four binary properties A-D.

The sequence shown in 4(a) has valid mappings on the
graph, because we can clearly see the A before B before C
relation. And D is present during the sequence as well. Due to
the fact that B and C are overlapping, it is possible to assign
different subsequences to the B and C node. This means that
the pattern graph has more than one valid mapping. On the
other hand we cannot find a valid mapping for the sequence
shown in Fig. 4(b), because we cannot find the relation A
before B. If A were true within [6, 9] (rather than [10, 15]),
we would have another valid mapping.

Possible graph constructs. In Sec. II we mentioned that the
pattern graph is able to express partial order of events and can
deal with overlapping temporal constraints. In this paragraph
we show the graph constructs which enable these situations.
In order to allow partial ordering the graph shown in Fig. 5 is
needed. The graph requires A before C and B before C but the

A

[1,*]

[1,*]

B

?

[1,*]

?

[1,*]

[1,*]

C

?

[1,*]

?

[1,*]

Fig. 5. Example pattern graph with the partial order construct: A and B
before C and no explicit relation between A and B.

relationship between B and C is not defined, thus the relation
could be any one of the 13 allen’s relations.

To model the situation “the connection A was lost for at
least 4 hours and during that time connection B was lost for
at least 30 minutes” the pattern graph in Fig. 6 could be used.

?

[1,*] A lost

B lost?

[1,*] [30,*]

?

[1,*]

?

[1,*]

[240,*]

Fig. 6. Example pattern graph showing two overlapping temporal constraints

Due to the two parallel paths between the two ’don’t care’
nodes, the lost connection of A and B have to occur together at
some point of time. The two additional ’don’t care’constraints

in the “B lost” path allow an occurrence of “B lost” somewhere
during “A lost”. Finally the length of the connection losses are
modeled with the temporal constraints [240, ∗] and [30, ∗].

Formal definition. The following four definitions provide
a more detailed and formal definition of the pattern graph.

Definition 3 (constraint). Let C = {C |C : S → B} denote
the set of all possible constraints for (sub)sequences. We dis-
tinguish between value constraints and temporal constraints. A
value constraint restricts the values of a subsequence, whereas
a temporal constraint narrows the acceptable length of the
subsequence.

Examples for value constraints on a (sub)sequence S =
(~s1, . . . , ~sn) ∈ S are:
• C(S) = true — This constraint is always satisfied and

will be denoted by ’?’ or ’don’t care’.
• C(S) = (∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m : (~si)j ∈ D′j) for

some D′j ⊆ Dj , 1 ≤ j ≤ m. This constraint holds if all
values remain in the specified ranges D′j .

An example of a temporal constraint is:
• C(S) = (a ≤ |S| ≤ b) for 1 ≤ a ≤ b. This

constraint holds, if the duration of the sequence lies
within a valid range [a, b] of durations. We say that the
temporal constraint C is induced by the interval of valid
durations [a, b]. This will be the only temporal constraint
we consider in this paper.

In our example sequence, the value constraint “A has to
be true” holds for S|[1,2] but not for the whole sequence S,
because at time point three and four the attribute A takes the
value ’false’.

Definition 4 (pattern graph). A pattern graph M is a tuple
(V,E, Cval, Ctemp), where (V,E) represents an acyclic directed
graph with a finite node set V ⊆ N ∪ {>,⊥} and the edge
set E ⊆ (V × V). Furthermore the graph has the following
properties:
• ∀(v, w) ∈ E : w 6= >

(Node > has only outgoing edges.)
• ∀(v, w) ∈ E : v 6= ⊥

(Node ⊥ has only incoming edges.)
• ∀v ∈ V \{>,⊥} : (∃w ∈ V : (v, w) ∈ E) ∧ (∃w ∈ V :

(w, v) ∈ E) (All nodes v ∈ V \{>,⊥} have at least one
incoming and outgoing edge.)

Cval and Ctemp are maps that assign a value constraint and a
temporal constraint, resp., to each node v ∈ V \{>,⊥}. For
simplification, let Cv

val = Cval(v) and Cv
temp = Ctemp(v).

Definition 5 (mapping). Let a sequence S and a pattern graph
M = (V,E, Cval, Ctemp) be given. By I we denote the set of all
intervals lying within [1, |S|]. A mapping B : V → I assigns
to each node v ∈ V \{>,⊥} a contiguous subsequence of
S. Thus B(v) := [a, b] denotes the start and end index of the
associated subsequence that is mapped to node v (v is mapped
to S|B(v)). The fictitious subsequence S|[0,0] is mapped to >
and S|[|S|+1,|S|+1] to ⊥ .

Definition 6 (valid mapping). A valid mapping of a pattern
graph M = (V,E, Cval, Ctemp) and a sequence S = (~s1, ..., ~sn)
is a mapping B with the following additional properties (V ′ =
V \{>,⊥}):

1) ∀(v, w) ∈ E,B(v) = [a, b], B(w) = [c, d] : b + 1 =
c (no gaps)

2) ∀i : 1 ≤ i ≤ |S| : ∃v ∈ V ′ : i ∈ B(v)
(each index is assigned to at least one node)

3) ∀v ∈ V ′ : Cv
val(S|B(v)) = true

(all value constraints satisfied)
4) ∀v ∈ V ′ : Cv

temp(S|B(v)) = true
(all temporal constraints satisfied)

IV. MATCHING

In this section we explain how to find valid mappings
(matches) of a sequence to a given graph. For the remainder of
this section, we assume a pattern graph M = (V,E, Cval, Ctemp)
and a sequence S is given. Furthermore, for the sake of an
efficient matching algorithm, we restrict ourselves to closed
value constraints, which additionally satisfy the following
condition: C(S|[a,d]) ⇒ ∀a ≤ b ≤ c ≤ d : C(S|[b,c]) (if C
holds on S|[a,d], it does also hold on all subsequences S|[b,c]).

A. Preliminaries

Definition 7 (valid node locations). By TN (v) for a node v ∈
V we address the set of all time indices that satisfy the value
constraint Cvval associated with v. For the special nodes ⊥ and
> we declare TN (>) = { 0 } and TN (⊥) = { |S|+1 }. Such
constraints typically hold over a period of time indices, they
may therefore be written as a set of intervals.

Up to now, we know that for any valid mapping B we have
B(v) ⊆ TN (v). A time period [a, b] ⊆ TN (v), however, may
be unsuitable for B(v), if v is connected to another node w
(by an edge (v, w) ∈ E), but b+ 1 6∈ TN (w). For a mapping
to be valid we have to ensure that all constraints hold at node
crossings.

Definition 8 (valid edge locations). Let (v, w) ∈ E, let [a, b]
induce Cv

temp and [c, d] induce Cw
temp. The set of all valid edge

positions TE(v, w) for edge (v, w) is defined as the set of all
time indices t, where Cv

val holds for at least a time units up
to time t and Cw

val holds for c time units after time t at least.
More formally:

• TE(>, w) = {0} if Cw
val(S|[1,c]), otherwise ∅

• TE(v,⊥) = {|S|} if Cv
val(S|[|S|−a+1,|S|]), otherwise ∅

• t ∈ TE(v, w)⇔ Cv
val(S|[t+1−a,t]) ∧ Cw

val(S|[t+1,t+c])

Now, for any valid mapping B, we have further restricted
the possible outcome of B(v) to some [a, b] ⊆ TN (v) ∩
TE(v, w) for (v, w) ∈ E. In fact, if there is more than
one outgoing edge, say (v, w) and (v, w′), the possible edge
positions have to fulfil even more constraints. If w′ itself has a
connection (v′, w′) this also influences possible values for the
end time b of B(v) = [a, b]. We collect all edges that influence
the valid position of an edge in a group:

Definition 9 (edge group). The set G(v, w) for (v, w) ∈ E is
implicitly defined by:

1) (v, w) ∈ G(v, w)
2) (x, y) ∈ G(v, w) ⇔ (x, y) ∈ E ∧ ∃(u, z) ∈ G(v, w) :

u = x ∨ z = y

By G = {G(v, w) | (v, w) ∈ E} we denote the set of all edge
groups of the pattern graph. This means that an edge group
of an edge consists of the edges that could be reached by an
alternating path of forward and backward edges.

The definition of an edge group is based on the ’no gap’
constraint of the pattern graph: all edges that are reachable via
a path of alternating forward and backward edges, beginning
by an arbitrary edge of the edge group, influence each other
wrt. valid node locations.

This leads us to definition 10.

Definition 10 (valid edge group location). Given E′ ∈ G, the
set of all valid edge group locations TG(E

′) is defined by
those points in time that fulfil all constraints on all individual
edges of the group: TG(E

′) =
⋂

(v,w)∈E′ TE(v, w).

B. Matching-algorithm
With the preliminary definitions we are now able to in-

troduce the graph matching algorithm (Alg. 1). As it comes
to implementation, we have to settle on the data structures
for the various sets of time points (such as TN , TE , TG).
As mentioned earlier, chances are high that the time points
in these sets are not disconnected but lumped together (just
consider for example the value constraints x > 3, which
usually hold over a period of time). We therefore use se-
quences of intervals as data structures for the above mentioned
sets. Note, that an interval [3, 5] actually refers to the set
{3, 4, 5} because our time dimension is discrete, and that a
single time point 3 will be encoded as an interval [3, 3]. A set
T = {1, 2, 3, 4, 7, 8, 9} is thus represented by a minimal set of
intervals R = {[1, 4], [7, 9]}. The set is minimal in the sense
that we have no duplicate entries (whenever two intervals have
a nonempty intersection, we replace it by its union).

Algorithm 1 graph matching
Require: Pattern Graph M = (V,E, Cval, Ctemp), sequence S,

nodes v ∈ V in topological order.
Ensure: valid mappings

1: calculate valid node locations TN (v), v ∈ V
2: calculate valid edge locations TE(e), e ∈ E
3: determine edge groups G
4: calculate valid edge group locations TG(E

′), E′ ∈ G
5: combine values from edge group locations to mappings
6: for all mappings do
7: check mapping
8: end for
9: return valid mappings where ¬∃E′ ∈ G : TG(E

′) = ∅
holds

The algorithm basically computes the sets of locations as
they were defined before. The valid node locations are easily

obtained by scanning through the sequence once. The edge
locations can be derived (cf. Alg. 2) from the node locations
by applying a special shrinking operation to the interval sets:

shrinkl,r(T) := {[a+ l, b− r] | [a, b] ∈ T}

For instance, shrink1,0({[1, 4], [7, 9]}) = {[2, 4], [8, 9]}
shrinks all intervals by one time unit at the beginning, or
shrink2,1({[1, 4], [7, 9]}) = {[3, 3]} shrinks at both ends. In
the second example, one of the intervals vanished completely.

Algorithm 2 calculate valid edge locations
1: for all (v, w) ∈ E do
2: let Cv

temp be induced by [a, b]
3: let Cw

temp be induced by [c, d]
4: TE(v, w)← shrinka−1,0(TN (v)) ∩ shrink−1,c(TN (w))
5: end for

A position p to switch from one node v to node w (according
to an edge (v, w) ∈ E) is only valid if the value constraints
Cv

val hold for a sufficiently long period before p and Cw
val for

sufficiently period long after p. The sets TN (v) and TN (w)
contain the locations that fulfil the value constraints of the
node, so we just have to ensure that the subsequence assigned
to v/w will be long enough (addition or subtraction of the
minimal temporal constraints). By shrinking the sets of valid
node locations by the minimal duration (given by the temporal
constraint) we assure that all remaining time points may serve
as an edge location.

Algorithm 3 calculate valid edge group locations
1: for all E′ ∈ G do
2: TG(E

′)←
⋂

e∈E′
TE(e)

3: end for

The next step is shown in Alg. 3, where we compute the
valid edge group locations as expected. This step is relatively
simple because we have already computed the possible posi-
tions for each edge.

At this point we have one or more continuous intervals with
valid edge locations for each edge group. In principle, we
may select an edge location for each edge group, which gives
us the subdivision of the original sequence S in the desired
parts. However, there are some aspects that have not yet been
covered: (1) the upper bound of the temporal constraints and
(2) some edge locations (although valid) may prevent us from
mapping the pattern completely to the sequence (e.g. because
there is nothing left to match the remainder of the pattern).
These two aspects are covered in algorithm 4 by applying a
forward and backward sweep, similar to critical path plan-
ning [8]. The main idea is that we go through the nodes of
the graph in a topological order and propagate the reachable
positions (within the temporal constraint and satisfying the
value constraint) from the incoming edge positions to the
outgoing edge positions.

Algorithm 4 check mapping
1: repeat
2: for all v ∈ V (topological order) do
3: for all (v, w) ∈ E do
4: let Cv

temp be induced by [a, b]
5: T ′E ← {[t1 + a, t2 + b] | [t1, t2] ∈ TG(G(·, v))}
6: T ′G ← TG(G(v, w)) ∩ T ′E
7: TG(G(v, w)) ← { p ∈ T ′G | ∃t ∈ TG(G(·, v)) ∧

∃t′ ∈ TN (v) : t ∩ t′ ∩ p 6= ∅ }
8: end for
9: end for

10: for v ∈ V (reverse topological order) do
11: for all (w, v) ∈ E do
12: let Cv

temp be induced by [a, b]
13: T ′E ← {[t1 − b, t2 − s] | [t1, t2] ∈ TG(G(v, ·) }
14: T ′G ← TG(G(w, v)) ∩ T ′E
15: TG(G(w, v)) ← { p ∈ T ′G | ∃t ∈ TG(G(v, ·)) ∧

∃t′ ∈ TN (v) : t ∩ t′ ∩ p 6= ∅ }
16: end for
17: end for
18: if ∃E′ ∈ G : TG(E

′) = ∅ then
19: return
20: end if
21: until TG(E

′), E′ ∈ G do no longer change

For a concrete mapping we have to pick a position for an
arbitrary edge and then iteratively pick the position for the
next edges, but we also have to keep the temporal constraint
satisfied.

A detailed proof of correctness is beyond the scope of
this paper. But we want to explain the main idea behind
the proof. We start with all possible mappings and in each
step we remove only invalid mappings. The first five steps
of algorithm 1 prepare the final check, which is done by
algorithm 4. During the forward sweep, positions (for an
outgoing edge) may be discarded because of two reasons:
First we may not find a suitable position in the incoming
edge position to satisfy the temporal constraint. And secondly
because the subsequences created by two consecutive edge
positions do not satisfy the value constraint. In both cases
the removed positions cannot be a part of a valid mapping.
Note that during the forward and backward sweep the value
constraint of a node is checked by testing to see if both edge
positions intersect with the same interval of the valid node
locations of the enclosed node. This is only possible because
of the restriction to closed value constraints. Another important
aspect in the forward and backward sweep is topological
ordering. This ensures that we only further propagate from an
edge group, once all of its predecessors have already been dealt
with. Where in the crucial path analysis only one forward and
backward sweep suffices, we have to repeat the sweep multiple
times. (During the backward sweep, positions are removed
but they could be necessary to reach other edges during the
forward sweep).

V. APPLICATION

We applied our pattern graph to real world data from a
German car manufacturer. Several cars were equipped with
recording devices that captured various measurements, such
as current speed, gear, pedal state and angles, etc. One
(intermediate) goal is to identify driving cycles with a specific
duration in the data, which appears pretty simple at first glance.
(Once these cycles have been extracted, they will form the
basis of subsequent research.) In a test-bed situation, a driving
cycle may be defined as a sequence of acceleration, constant
speed and deceleration. However, if we define ’cycle’ by such
a pattern (cf. Fig. 7), it matches far more situations than the
experts actually had in mind.

constantacceleration deceleration ?

[1,*]

?

[1,*] [1,*] [1,*] [1,*]

Fig. 7. First pattern graph to query driving cycles.

In figure 8 we see some of the matches marked by a black
rectangle, many of them not qualifying as a driving cycle, e.g.
the small rectangle at high speed in the middle. One problem
is, of course, the choice of a threshold that distinguishes
constant speed from ac-/deceleration, another aspect may be
duration of the acceleration.

Fig. 8. Some (not all) cycles found with the pattern graph shown in 7.
The red line displays the current speed and the intervals show the current
behaviour of the car.

Luckily we have multivariate data, so rather than sticking to
the speed profile alone, the expert may focus on other variables
as well. Our (common sense) background knowledge tells us,
that an acceleration involves gear shifting, however, the driver
may also shift gears back and forth because the traffic density
requires it. However, shifting gears up twice may be a good
indicator for acceleration at the beginning of a driving cycle.
To further constrain the start of a new cycle, we additionally
require that engine revolutions are rather low before we shift
gears up twice, because otherwise we may be within a cycle
that started earlier. Visual inspection of the matches found
by this intermediate pattern draws our attention to situations

in which the two up-shifts are disrupted by a down-shift, so
we simply exclude such occurrences from the pattern. In this
knowledge-based, explorative manner, we arrive at the pattern
graph shown in Fig. 9.

- - -

�

-

J
J
Ĵ

- -

6

?

- - -

[1,*]

low revolutions
¬gear up

[1,*]

?

[1,*]

¬gear up

[200,*] [1,*]

¬gear up
gear down

[1,*]

¬gear up

[1,*]

[1,*] [1,*]

gear up

[1,*]

?gear up

¬gear up ¬gear down

[1,*]

?¬gear down

Fig. 9. Pattern graph to query driving cycles.

As we can see it is still a rather simple pattern graph with
one parallel branch and 13 nodes. Please note that nodes near
the start and end are ’don’t care’ nodes, which enable us to
find the cycles anywhere in the middle of the sequence. We do
not try to capture constant speed any longer, but use a don’t
care node instead (still without down-shift). In this manner we
elegantly include freewheeling situations that definitely belong
to the driving cycle but would not fit the concept of constant
speed. Actually, even an emergency break at high speed would
match that part of the patterns, providing no down shift is
involved, as this would mark the end of the cycle.

Fig. 10. All found cycles (marked with rectangles) with the enhanced graph.
The red line shows the speed of the car, and the intervals below show the
relevant parts of the extracted interval sequence.

In Fig. 10 we can see all of the matches found by querying
the sequence with the pattern graph above. The figure shows
the speed profile of the reference trip in the first place, while
the black rectangles contain the retrieved cycles. In the second
plot we can see the extracted labelled interval sequence from
the original data, where red colours indicate the intervals
responsible for the longest retrieved cycle. As one can see
we were able to retrieve all cycles.

The pattern graph in Fig. 9 has been constructed interac-
tively by setting up the graph and inspecting the matches
on the reference trip shown in Fig. 10. We have compared
the retrieved matches from nine further trips with the cycles
that were identified manually beforehand. Figure 11 shows
one example: The pattern graph performs well on this unseen
data, most of the cycles are retrieved as expected. Only the
cycle at the end of trip was not found. The reason lies in the
requirement of having two gears up: in this cycle we have only
one gear up before the gear down appears. Please note that gear

Fig. 11. All found cycles marked in the evaluation sequence. The line-plot shows the speed and the lower plot shows the corresponding interval sequence.

up or gear down interval stays active as long as no further
gear change occurs. The labels g(..,0.500), g(0.500;1500), ...
and g(4.500;...) correspond to the current gear (idle, first, ...
fourth or higher).

The table shows the performance over the nine trips:

trips cycles correctly found undetected
9 107 96 11

As we can see most of the cycles were retrieved correctly,
but we have missed a few. What most of the undetected
cycles have in common is, that the driver only shifted up one
gear, because he was already driving in a high gear. Only a
small modification is needed to retrieve all cycles of a specific
duration: We introduce a new node with a ’don’t care’ value
constraint and a temporal constraint with the desired durations
(e.g. [3000,*]) and connect it to the gear up and gear down,
¬gear up node as shown in (Fig. 12). The different groups are
retrieved by changing the temporal constraint.

- - -

�

-

J
J
Ĵ

6

-- - - -

?

-

6

?

?

?

[1,*]

¬gear up

[200,*] [1,*]

¬gear up
gear down

[1,*]

¬gear up

[1,*]

[1,*] [1,*]

gear up

gear up

¬gear up ¬gear down

[1,*]

?¬gear down

[1,*]

low revolutions
¬gear up

[1,*]

[1,*]

[3000,*]

Fig. 12. Pattern graph with temporal constraint on the cycle duration

VI. CONCLUSIONS

We have introduced a new, powerful formalism to describe
patterns in multivariate sequences and have demonstrated its
applicability on real world data. We have shown that patterns
may appear easy to grasp at first glance, but a straightforward

implementation may leave a number of (exceptional) cases
uncovered (as is often the case with real data). Offering
an intuitive and expressive means of combining constraints
on multiple variables, close to the human perception of the
situation, allows us to make full use of the expert’s domain
knowledge. We strongly believe that the pattern graph concept
supports the interaction of the domain expert (being able to
express his/her current level of knowledge) and data mining
techniques to further improve a manually constructed pattern,
which will be part of our future work.

ACKNOWLEDGEMENTS

We would like to thank Dr. Werther from Volkswagen AG
for kindly providing the data.

REFERENCES

[1] H. Hochheiser and B. Shneiderman, “Dynamic query tools for time series
data sets: Timebox widgets for interactive explorations,” Information
Visualization, vol. 3, pp. 1–18, 2004.

[2] Y. Shahar and M. A. Musen, “A temporal-abstraction system for patient
monitoring.” Proceedings of the Annual Symposium on Computer Appli-
cation in Medical Care, pp. 121–127, 1992.

[3] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, pp. 832–843, November 1983.

[4] F. Höppner and F. Klawonn, “Finding informative rules in interval se-
quences,” in Proceedings of the 4th International Conference on Advances
in Intelligent Data Analysis, ser. IDA ’01. London, UK, UK: Springer-
Verlag, 2001, pp. 125–134.

[5] F. Mörchen, “A better tool than allen’s relations for expressing temporal
knowledge in interval data,” in Theory and Practice of Temporal Data
Mining (TPTDM 2006) – Workshop of the 12th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, 2006, pp. 25–34.

[6] ——, “Unsupervised pattern mining from symbolic temporal data,” ACM
SIGKDD Explorations Newsletter, vol. 9, no. 1, pp. 41–55, 2007.

[7] S. Peter and F. Höppner, “Finding temporal patterns using constraints
on (partial) absence, presence and duration,” in International Conference
on Knowledge-Based and Intelligent Information & Engineering Systems,
2010, pp. 442–451.

[8] J. Kelley, “Critical path planning and scheduling: Mathematical basis,”
Operations Research, vol. 9, no. 3, 1961.

