Learning Pattern Graphs for Multivariate
Temporal Pattern Retrieval

Sebastian Peter!, Frank Hoppner? and Michael R. Berthold!

! Nycomed-Chair for Bioinformatics and Information Mining
Dept. of Computer Science, University of Konstanz
Box 712, D-78457 Konstanz, Germany
2 Ostfalia University of Applied Sciences
Dept. of Computer Science, D-38302 Wolfenbiittel, Germany

Abstract. We propose a two-phased approach to learn pattern graphs,
a powerful pattern language for complex, multivariate temporal data,
which is capable of reflecting more aspects of temporal patterns than
earlier proposals. The first phase aims at increasing the understandabil-
ity of the graph by finding common substructures, thereby helping the
second phase to specialize the graph learned so far to discriminate against
undesired situations. The usefulness is shown on data from the automo-
bile industry and the libras data set by taking the accuracy and the
knowledge gain of the learned graphs into account.

1 Introduction

As the number of (mobile and/or wireless) sensor networks increases (e.g. health
care, climate, earthquakes, traffic), more and more data is gathered periodically
and the interest in analyzing temporal data rises. The recorded data usually
includes various dimensions and the user is often interested in typical or char-
acteristic situations. To grasp or encompass these situations, various notions of
multivariate temporal patterns are employed in the literature. Example applica-
tions for multivariate temporal patterns include the discovery of dependencies
in wireless sensor networks [1], the exploration of typical (business) workflows
[3] or classification of electronic health records [2].

We present a new approach to derive classification rules automatically from
multivariate, temporal data. Rather than enumerating all patterns (and forcing
an expert to have a look at (too) many of them), we invite the expert to actively
work on the patterns — by constructing them from scratch, by extending the
patterns proposed by the algorithms presented in this paper or by alternating
between both steps. To enable such a successful interaction, it is crucial that the
pattern language itself is expressive enough to include the kind of constraints the
expert wants to express. We use pattern graphs [8] as they provide the necessary
flexibility to include not only the order of events, but also different kinds of
parallelism, absence of events, as well as constraints on their duration.

The outline of the paper is as follows: We discuss notions of multivariate tem-
poral patterns, including the pattern graph, in the next section. A two-phased

approach to construct rich pattern graphs for classification tasks, consisting of
the identification of common substructures and its specialization towards class
predictability, is presented in Sect. 3. Results from a real world application are
shown in Sect. 4. Finally Sect. 5 concludes the paper.

2 Notions of Multivariate Temporal Patterns

Preliminaries. Due to the fact that we consider a classification task, a case
consists of a multivariate data sequence S plus a class label. Rather than build-
ing the patterns upon raw data (e.g. the time series itself), we formulate them
by means of various conditions (temporal abstractions), such as A=‘speed is
above 50 km/h’ or B=‘clutch pedaled’ etc. We use these abstractions to pose
constraints over certain periods of time. Besides these constraints on the values
of the sequences, we also consider temporal constraints on their duration. For
instance, we may require that there is some period of time in which ’A is present
and B is absent for 5-10 time units’ (which will be abbreviated by ‘A, —B [5, 10]’).

Related Work. Many approaches, such as [2], describe multivariate tem-
poral patterns by specifying the relationships between all observed intervals like
‘A before B', ‘A overlaps C’ and ‘C overlaps B’ in the spirit of [5]. This notation
is quite strict and somewhat ambiguous [7], because the qualitative relationship
does not carry quantitative information about the degree of overlap or size of
a gap. Other approaches contain such information [3], but only consider events
without duration and thus offer no means to express concurrency as in ‘A and
B must co-occur for 5-10 time units’. In practice, we frequently want to forbid
some events (e.g. ‘no connection to host while running batch’). Sometimes neg-
ative constraints are used to filter a large set of enumerated patterns [1], but
the pattern language itself seldomly offers the means to express the absence of
events. For this paper, we settled on pattern graphs, because they offer all these
features.

Notion of a Pattern Graph. A pattern graph (V, E, Cyal, Cremp) is an
acyclic, directed graph (V, E) with one source (T € V) and one sink (L € V).
Associated with each node v € V, we have value constraints Cy,(v) on the
necessary observations while in node v and temporal constraints Ciemp(v) on
the duration of node v. A sequence matches (fits) the pattern graph if it is
possible to assign subsequences from S to all nodes of the graph, such that the
subsequences satisfy all constraints of the assigned nodes simultaneously. The
assignment has to be complete in the sense, that (1) the empty prefix of S is
assigned to the source, the empty suffix of S to the sink, (2) a non-empty sub-
sequence is assigned to all other nodes, and (3) the subsequences to connected
nodes are contiguous.

Interpretation. In Fig. 1 we see an example pattern graph with two parallel
paths which is read as follows:

1. The temporal constraint of a node is represented above the node. A star
represents an unlimited duration.
2. The value constraint(s) of a node is (are) shown inside the node.

Al — i Al “ A
(4] 5] (5] Lo | " | o o |
— Bl ! — B|! — !
9 D 9 [| i | o " |
C I I I _ C I _ I
T L - | H | i I |
- [1,%] [1,%] [1,%] [1,%] [1,%] - | | | I | N} Im |
D| " D| — ¥ i
0 5 10 15 20 0 5 10 15 20

Fig.1. Example pattern graph with
two parallel paths from T to L. Fig. 2. Two example sequences with four bi-
nary properties A-D.

3. A node without any value constraints is labeled ‘?’ (don’t care).

To match a given sequence to a pattern graph, it has to be subdivided into
several parts (on the time axis), such that each part can be assigned to a node
of the graph. The nodes therefore represent a part of a sequence and pose con-
straints on the values and the duration of the subsequence: The temporal con-
straints restrict the length and the value constraints restrict the behavior of the
respective subsequence. The edges between the nodes enforce the order of the
parts. If a node has an outgoing edge it means that there has to be another
part directly after the associated subsequence that fulfils the constraints of the
successor node. If a node has two or more outgoing edges, all parts belonging
to the following nodes have to begin at the same time. On the other hand, if a
node has two or more incoming edges all parts belonging to the preceding nodes
have to end at the same time and the part of the node has to begin immediately
afterwards. Thus, to express that two conditions A and B occur simultaneously,
we include both, A and B in one node (as value constraints). In contrast, to
express that A and B are concurrent but independent from each other, we intro-
duce parallel paths for A and B. Any condition A may continue to hold before
or after the node unless a condition = A forbids this explicitly.

Mapping sequences. Fig. 2 shows two sequences where the vertical axis
shows a number of value constraints A-D that hold over certain periods of time
(black bars, time on horizontal axis). We now discuss whether these sequences
can be mapped validly to the pattern graph in Fig. 1. The graph shown in Fig. 1
can be decomposed into two different paths: For the lower path the sequence has
to be divided in five contiguous parts, so that the first part satisfies the ‘don’t
care’ constraint, during the second part the property A has to hold, the property
B in the third, etc. The last part is again a ‘don’t care’-part. All of these five
parts require a duration of at least one time unit (but have no upper bound on
the duration). Parallel to the lower path, the upper path requires ‘don’t care’,
‘D’ and ‘don’t care’ again with durations > 1 time unit.

The sequence shown in 2(a) can be mapped to the graph, because we can
clearly see that A is before B and B before C. And D is present during this
subsequence as well. Due to the fact that B and C are overlapping, it is possible
to assign different subsequences to the B and C node (the overlapping part may
be assigned to any of the respective nodes or may even be split up into two

parts). This means that the pattern graph has more than one valid mapping.
On the other hand we cannot find a valid mapping for the sequence shown in
Fig. 2(b), because there, A does not occur before B. If A were true within [6, 9]
(rather than [10, 15]), we would have another valid mapping.

For a more formal definition of a pattern graph and a valid mapping, as well
as an efficient algorithm that decides if a sequence matches a given pattern graph
or not, we refer the interested reader to [8]. This algorithm may either simply
state whether a match is possible, or it provides us with detailed information
about possible matches in the following sense: For each edge e = (u,v) € E in
the graph, we obtain a set of valid positions p(e) in case of a valid mapping,
that is, a set of positions ¢ that satisfy all value constraints of node u for ¢/ < ¢
and all value constraints of node v for ¢ > t. For the graph in Fig. 1 and the
sequence in Fig. 2(a) for the edge e from node A to B we have only one valid
location p(e) = {10}, but for the edge ¢’ from B to C we have p(e’) = {[14, 15]}.

3 Learning Pattern Graphs

Next we propose a two-phased approach to learn pattern graphs from labeled
data. In the first phase we build a pattern graph that is mappable to all in-
stances of the target class. This is done for the following two purposes: Firstly,
the resulting pattern graph describes the structure shared by all instances of the
class — even if they were not necessary for the purpose of classification — and thus
supports the interpretability of the class. Secondly, the graph represents a good
initialization for the second phase of the algorithm, which is a pattern graph
refinement via beam search. The beam search is tailored towards a quick im-
provement in terms of discrimination capabilities, but with real-world problems
it is impossible to discriminate classes with a pattern graph if it consists of a
few nodes only. If we were starting the beam search from scratch (empty graph),
it would waste considerable time to build up a pattern graph that is complex
enough to eventually include the important aspects for the classification task.
In [6] we have experimentally shown that a two-phased approach for learning (a
restricted set of) temporal patterns may not only increase the understandability
but additionally may increase the accuracy of the patterns as well. Here, we have
extended this approach to the case of full-fledged pattern graphs (whereas the
earlier work used only ’limited patten graphs’, which consisted of a single path
from T to L only).

3.1 First phase: identifying the shared structure (within a class)

As already mentioned the primary goal of this phase is to find key aspects of the
target class. As we expect to obtain quite complex graphs from this step already,
we do not employ frequent sequence mining algorithms (e.g. [9]), as they would
waste considerable time on the enumeration of a huge number of frequent sub-
graphs. Furthermore, such methods are usually not suited for including absent
items (or constraints). The problem of finding a pattern common to all instances

[1,%] [1,%] [1,%]
A7

[1.%]

L1 [

Fig. 3. Resulting pattern graph from step 1 where A occurs once and B two times

(of one class) is closely related to the alignment of multiple sequences, which is
known to be NP-complete [10]. As we are aware that those parts of the graph,
which are important for the classification task, will be inserted during the re-
finement phase anyway, there is no need to find some kind of best graph in the
first phase, therefore we settle for a heuristic approach. The following proposal
exploits the possibilities of the pattern graph to incorporate temporal-, present-,
absent- and ‘don’t care’ -constraints into the pattern graph. It consists of three
steps: In the first step the relevant nodes of the graph are computed, then we
add relations between the nodes and finally remove redundant parts.

Univariate paths. As a preprocessing step, we scan through all instances
of the target class once and determine the (contiguous) intervals in which a
constraint holds. For every constraint C' the minimum number ne of intervals
per instance is determined. From this information we create the first pattern
graph: For every constraint C we create a path from T to L always starting
and ending with a ‘don’t care’-node, consisting of an alternating sequence of n¢
present- and absent- nodes. For example, if constraint A holds at least once and
constraint B twice, the resulting graph is shown in Fig. 3. The resulting pattern
graph has at least one valid mapping on all sequences of the target class, as we
only state the minimal number of occurrences and require no specific relation
between different constraints, because they are aligned in different paths.

Linking paths. The second step inserts connections between nodes from
different paths. As already mentioned, the matching algorithm [8] returns for an
edge e € F all valid edge locations p(e) in a given sequence. For two nodes u
and v, let A = ﬂ(u’w)eE p(u, w) contain all valid ‘end positions of node u’ and
let B = ((,,,)ep P(w,v) contain all valid ‘start positions of node v”. If there
are a € A,b € B such that 0 < b — a < t, the gap between node u and v is
at most t time units wide. If it is possible to satisfy this condition for every
individual sequence, we may safely introduce a new ‘don’t care’-node between
nodes u and v with a temporal constraint [1,] without risking the match of any
of the sequences to the extended pattern (because its feasibility has already been
checked). The function ‘check(u,v,t,S)’ indicates by its return value whether this
condition is satisfied for all sequences S. To support the understandability of
the graph we do not allow the connection of * don’t care’ nodes. Furthermore,
an edge connecting u to v is not added if a (possibly longer) path already exists
from u to v . On some rare occasions the additional node might inject a cycle

into the graph; to ensure the acyclic property of the graph, we disallow such
cases. A sketch of this procedure is shown in Alg. 1.

Algorithm 1 linking paths

Require: start pattern graph G = (V, E, Cy,1, Ctemp), set S of target sequences, min-
length, maxlength, stepsize

Ensure: return extended pattern graph

1: t < minlength

2: repeat

3: for all (vi,v2) € V xV do

4: if check(v1,v2,t,S) and — existsPath(vi,v2) and — existsPath(vs, v1) then
5: extended G by a ‘?-node between v1 and vz with duration [1,¢]

6: re-run pattern matcher to update sets p(e), e € E

7 end if

8: end for

9: ¢ < t+stepsize
10: until ¢ >maxlength
11: return G

Removing redundancy. The last step removes those edges and nodes from
the graph that are no longer needed because they do not provide additional
information (or may be derived from transitivity). In particular, the algorithm
checks for each ‘don’t care’-node v, with exactly one incoming and one outgoing
edge, if a path exists from node v, directly preceding it to the node vy directly
following it. If this is the case the ‘don’t care’-node and the connecting edges are
removed. This ensures us, that no synchronization between nodes is removed and
all constraints are preserved: synchronization requires at least two incoming or
outgoing edges and no value constraints are removed (the parallel path subsumes
the ‘don’t care’ constraint). As an example, consider the case that in step two
the pattern graph in Fig. 3 has been extended by an edge connecting A and
= B. This would render the ‘don’t care’ node following A useless because we can
follow the path A -+ —-B — B — ? — 1 to reach L as well.

3.2 Second phase: discrimination (between classes)

Next, we propose a method to explore the space of pattern graphs to discriminate
differently labeled sequences. The search algorithm implements a general-to-
specific search: it begins with the pattern graph from phase one, which matches
all instances (of the class), and tries to specialize it further to improve some
chosen measure of interestingness (e.g. the J-measure). While a propositional
rule can only be specialized by an additional condition (like outlook=sunny),
there are various ways to specialize a pattern graph: we can examine it in a
finer resolution (by splitting a node into two or three nodes), we can change
or add a value constraint (for some node), or introduce or change an existing
temporal constraint. Furthermore we can add new nodes or connect two existing

nodes with an additional edge to express a temporal dependency. We have settled
on five different specialization operators to address each of these aspects. The
outline of the beam search algorithm is given in Algorithm 2.

Algorithm 2 Outline of the beam search

Require: start pattern graph Gg, set S of labeled sequences
Ensure: set of k best pattern graphs (acc. to some measure of interestingness)

1: initialize the set T with the single start pattern Gs
2: repeat
3: B«T
4 for all G € B do
5 apply all refinement operators to G and insert resulting graphs into 7' (but
keep only the k best graphs in T')
end for
until k" best graph in T is not better than the k" best graph in B
8: return B

The general idea for all refinement operators is to search for specializations
that improve the measure of interestingness, which basically requires that the
specialized pattern still matches the positive instances but less negatives. Due
to lack of space, we will describe only two operators briefly.

Link Refinement. This refinement operator is almost identical to step two
of phase one, except that the criterion for path-inclusion is now an increase in
some chosen measure of interestingness rather than matching all instances of the
considered class. The connection that discriminates best will be included.

Path Refinement. This refinement operator determines for all nodes n
of the graph, whether some condition (temporal abstraction) occurs frequently
before or after the subsequence assigned to node n. As an example, consider the
node labeled A in the pattern graph of Fig. 4(a) as n. Suppose that in some
instances of the same class we observe a presence of condition X after n. If the
inclusion of ‘X after n’ increases the measure of interestingness most (among
all other possible combinations), we add a short sequence of nodes: 7 — X —7?
between the node n and L (or T in case the presence of X is observed before
n). In our example, we may obtain the pattern graph shown in Fig. 4(b).

Note that this refinement operator does not add the constraint between the
nodes labeled A and B, because it did not determine the relationship between
X and the node labeled B. We thus insert a path to T or L and leave the deter-
mination of a possible temporal relationship to B open for further refinements.

Complexity. The number of possible pattern graphs grows quickly with the
number of nodes and possible constraints in the data set. But we restrict the
number of actually explored patterns with the size of the beam. Apparently we
cannot guarantee that the best graph will eventually be found, because beam
search is a heuristic search technique. For each main iteration, the patterns in the
beam are extended by the five mentioned operators. All of the operators directly

[1.%] [R5 B R

[1.%] [1.%] (L 1]

T2 ={a={B {2 {1

(@) (b)

Fig. 4. Example of how the pattern graph (a) is refined by the partial order refinement
operator to the pattern graph (b)

work on the result of the matcher, so each instance has to be matched against a
pattern graph only once. The complexity of the refinement operators differ: for
example, the worst case complexity of finding the best partial order refinement
is in O(v*n*(m+cxc,)) and that of link refinement is in O(n * v? * m), resp.
Here v denotes the number of nodes in the graph, n the number of sequences, ¢
the number of different conditions, m the number of matches and ¢,, the number
of occurrences of the conditions in the sequences.

4 Experimental Evaluation

We evaluated the proposed algorithm on real world data from a German car
manufacturer. Several cars were equipped with recording devices that captured
various measurements, such as current speed, gear, pedal state and angles, etc.
The goal is to identify driving cycles with a specific duration in the data, which
appears pretty simple at first glance. In a test-bed situation, a driving cycle
may be defined as a sequence of acceleration, constant speed and deceleration.
However, if we define ‘cycle’ by such a pattern, it matches far more situations
than the experts actually had in mind. Fig. 5 shows one test drive, where the
first plot shows the current speed of the car over time and the lower plot the
intervals during which various conditions hold. These conditions were derived
from the numerical time series data using a priori defined thresholds. We used
the following labels:

gear up/down: indicates whether the last gear shift was up- or down-shift
— g: represents the current gear of the car: no gear (g(..-0.500)), gear one
(g(0.500-1.500)), ..., gear 4 or higher (g(4.500-...))

revolutions: represents the engine revolutions (low, middle, high)

— coupling: clutch is pedaled (coupling(0.500-..)) or not (coupling(..-0.500))

Learning the pattern graph. In [8] we created a pattern graph from
scratch by iteratively enhancing the graph with the help of expert knowledge
to retrieve the desired driving cycles. In the following we want to show how
the above mentioned approach could be used to help the expert specifying the
pattern graph or how a pattern graph could be learned if no expert is available.

120

110

100 e
a0
80 Lo
70
60

50

P M

30 ‘

20

10 |
o |

middle revelutions [— I (I O I I
low revelutions I] | L IR] [B ESiEe |
high revolutions I |
gear up giiy B | | BRI AR QI B [FES R
gear down Il |] mm i I 0N
a(4.500;..) | | RESEEEEE
g(2.500;4,500) |- N [R N |
9(2.500;2.500)] [| IEH L | 08 B [}
9(1.500;2.500) | 11 [Sl | IESE B B |
g{0.500;1,500) n 1 I | | | |
9(.,10.500) L1 L] | | 1 L3 |

0 10.000 20.000 30.000 40.000 50.000 60.000 70.000

Fig. 5. Possible driving cycles marked in the sequence, which could be used as instances
for the target class.

[1.%] (1%
‘ —gear up },,‘ gear up‘

[1,*/

[1.%] (1.4 [200.4] (1.7 (A

Tow revolutions gear down —gear down
—gear up }"‘ mgearup ~gear down —~gearup | . |-gear up .

Fig. 6. Pattern graph to query driving cycles.

To derive a pattern for the target class, as with any other classifier we need
examples that contain the target class as well as examples that do not (or con-
tain other classes). For illustration purposes, some ‘driving cycle’ examples are
marked by rectangles in Fig. 5. In many applications the sequence labels will
be readily available, but in our case we may ask an expert to label some ex-
amples manually. However, as we have already specified a pattern (rather than
marked individual sequences) for ‘driving cycles’ by means of expert knowledge
in [8], which does a pretty good job at identifying cycles, we have decided to use
this pattern (shown in Fig. 6) to label example sequences: We have extracted
various (random) subsequences and label them ‘driving cycle’ if the manually
constructed pattern matches. The appeal of this procedure is that it allows us
to compare the learned graph directly to the manually constructed graph.

5

(1.7 (.7 3 (1% [1,%] [1,50] r””7”””7”””7;””‘ ——————————— :
.—> [gear up |———»{—gear up |—={gear up [[1,50] V [1.#] (17 |
koupling(..,0.500) ’_’ gear down
[1,%] [1,%] [1,50] [1,%] [1.#] ;
; 114 |

Fig. 7. Pattern graph learned for the driving cycles. The graph without the dashed
nodes shows the pattern after phase one and the 3 dashed nodes are added during
phase 2.

The pattern graph without the dashed nodes shown in Fig. 7 was found
during the first phase of the approach. This graph is already very similar to the
graph used for extraction (cf. Fig. 6), the sequence of two up-shifts is prominent
in both graphs. The location of the low revolutions constraint is different, it
appears to occur somewhat later in the extracted graph. However, both parallel
paths in the extracted graph synchronize at the coupling-node. While the upper
part (gear-up) is closely connected to this node (time constraint [1,50]), this
is not necessarily the case for the lower part. Due to the unlimited temporal
constraint of the ‘don’t care’-node, the low revolutions are allowed to appear
before the first gear up (as in the original graph). The fact that no temporal
dependency is introduced in the extracted path may be explained by the simple
fact, that it did not help to discriminate the classes. Furthermore the graph
requires middle revolutions before low revolutions, but of course this is always
the case when slowing down before the next cycle starts (except for the first
cycle starting from a parking position). An interesting aspect is that between
the last gear up and the gear down node coupling(..,0.500) has to occur, which
is a stronger constraint than —gear down because a gear shift requires coupling.
If we apply the learned pattern to all instances we retrieve the confusion matrix

(399 50,), where we can see that all ‘cycles’ are matched correctly however we
also obtained 174 false positives. This was to be expected as we were not trying
to separate the ‘cycles’ from other sequences so far.

This is the task of the subsequent phase, which tries to reduce the number
of false positives by adding constraints to discriminate the target class from all
other classes. The resulting pattern is also shown in Fig. 7 if we include the
dashed nodes. The refinement operators added three constraints to the graph:
The first constraint is the —gear down-node between the first gear up- and gear
down-node, thus stating that no down-shift is allowed during the ‘cycle’. The
second refinement is the —gear up node connected from the don’t care-node
after the last gear up node to L, which ensures that after the last up-shift no
further up-shift can occur. The last additional constraint states that after the
gear down-node no further change in a lower gear is permitted (additional ~gear
down node connected between gear down and L).

By comparing the learned pattern (after phase 2) in Fig. 7 to the pattern used
for the extraction in Fig. 6 we can see that the patterns describe a nearly identical
‘driving cycle’. The beam search step only inserted constraints that helped to
separate the randomly selected sequences from the ‘cycles’. All these constraints
are also found in the manually defined graph that was used for labeling the
sequences. As the graphs are nearly the same it is not surprising that the learned
pattern performs perfectly as indicated by the confusion matrix: (330 .5).

Libras Movement. We also applied our algorithm to the libras movement
data set from the UCI repository [4]. It contains 15 different signs described by
their characteristic hand movement over 45 frames, where the current x- and y-
positions of the hand were recorded. We extracted features to address the speed
of the hand movement in the x- and y-direction only. For each sign we learned
a pattern graph on 66% of the data and then matched all pattern graphs to the
unseen data. We predict a class only if just one graph matches (and is ‘undecided’
otherwise). We arrive at 98 correct, 2 false and 23 unclassified instances, resulting
in 79.675% accuracy and 20.325% error-rate. For the 23 unclassified instances
(where no pattern graph matches), we can switch back to manual mode and
inspect and change the pattern manually to further improve the classification
rate. The dataset contains some cases that deviate greatly from the original hand
movement, such that even a human is not able to classify them. By removing
these outliers the approach improves to 88.235% accuracy and 11.765% error
rate.

5 Conclusion

We consider pattern graphs as useful for capturing multivariate patterns in tem-
poral data, because they are capable of expressing most of the constraints a
human expert may want to use when describing a specific situation (e.g. absence
of events, durations, different kinds of parallelism). These graphs are thus well-
suited for manual construction [8], but in this paper we have demonstrated that
they can also be learned automatically from data. We have presented a two-

phased approach to construct pattern graphs for classification tasks. The first
phase identifies the common structure in all sequences of the same class and the
second phase refines this structure further to discriminate between the differ-
ent classes. Early results are encouraging, the approach was able to successfully
re-discover hand-coded pattern graphs from a set of labeled examples.

Acknowledgements We would like to thank Dr. Werther from Volkswagen
AG for kindly providing the data.

References

1.

10.

T. M. Basile, N. Di Mauro, S. Ferilli, and F. Esposito. Relational temporal data
mining for wireless sensor networks. In AI*IA 2009: Emergent Perspectives in
Artificial Intelligence, number 5883 in LNAI, pages 416425, 2009.

I. Batal, H. Valizadegan, G. F. Cooper, and M. Hauskrecht. A pattern mining
approach for classifying multivariate temporal data. In Proc. IEEE Int. Conf.
Bioinformatics BioMed, pages 358-365, 2011.

M. Berlingerio, F. Pinelli, M. Nanni, and F. Giannotti. Temporal mining for
interactive workflow data analysis. In Proc. 15th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, KDD ’09, pages 109-118, 2009.

A. Frank and A. Asuncion. UCI machine learning repository. University of Cali-
fornia, Irvine, School of Information and Computer Sciences, 2010.

F. Hoppner. Discovery of temporal patterns — learning rules about the qualitative
behaviour of time series. In Proc. of the 5th Furop. Conf. on Principles of Data
Mining and Knowl. Discovery, pages 192-203. Springer, 2001.

F. Hoppner, S. Peter, and M. R. Berthold. Enriching Multivariate Temporal Pat-
terns with Context Information to Support Classification, volume 445 of Studies in
Computational Intelligence, pages 195-206. Springer Berlin / Heidelberg, 2012.
F. Morchen. Unsupervised pattern mining from symbolic temporal data. ACM
SIGKDD Ezplorations Newsletter, 9(1):41-55, 2007.

S. Peter, F. Hoppner, and M. R. Berthold. Pattern graphs: A knowledge-based
tool for multivariate temporal pattern retrieval. In Proc. IEEE Conf. Intelligent
Systems. IEEE, 2012.

J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Int.
Conf on Data Engineering, pages 79-90, 2004.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal
of Computational Biology, 1(4):337-348, 1994.

