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Abstract. We consider the problem of partitioning a data set of n data
objects into ¢ homogeneous subsets (that is, data objects in the same
subset should be similar to each other), such that each subset is of ap-
proximately the same size. This problem has applications wherever a
population has to be distributed among a limited number of resources
and the workload for each resource shall be balanced. We modify an ex-
isting clustering algorithm in this respect, present some empirical evalu-
ation and discuss the results.

1 Introduction

Cluster analysis is a widely used technique that seeks for groups in data. The
result of such an analysis is a set of groups or clusters where data in the same
group are similar (homogeneous) and data from distinct groups are different
(heterogeneous) [1]. In this paper, we consider a variation of the clustering prob-
lem, namely the problem of subdividing a set X of n objects into ¢ homogeneous
groups of equal size. In contrast to the clustering problem, we abandon the het-
erogeneity between groups and introduce the requirement of having equi-sized
groups.

Applications for this kind of uniform clustering include for instance: (a) The
distribution of n students into ¢ groups of equal strength to obtain fair class
sizes and with homogeneous abilities and skills to allow for teaching methods
tailored to the specific needs of each group. (b) The distribution of n jobs to ¢
machines or workers such that every machine has an identical workload and as
similar jobs as possible to reduce the configuration time. (¢) The placement of
c sites such that goods from n locations can be transported to the c sites, while
the total covered distance is minimized and queuing at the sites is avoided, that
is, approximately the same number of goods should arrive at each site.

Due to the similarity of our problem with traditional clustering problems,
we are going to modify an existing clustering algorithm, which will be reviewed
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in section 2. This objective function-based clustering algorithm — a variant of
k-means — transforms the discrete, combinatorial problem into a continuous one,
such that numerical problem solving methods can be applied. We modify the
objective function such that the equi-sized clusters are considered in section 3
and discuss the results in section 4.

2 The FCM Algorithm

The fuzzy c-means (FCM) clustering algorithm partitions a data set X :=
{Z1,..,xn} C R into ¢ clusters. A cluster is represented by a prototype p; € RY,
1 < i < c¢. The data-prototype relation is not binary, but a membership degree
u;; € [0,1] indicates the degree of belongingness of data object z; to proto-
type p; or cluster number ¢. All membership degrees form a membership matrix
U € R*™. We can interpret the membership degrees as “probabilistic member-
ships”, since we require

c
Vi<j<n: > uy=1. (1)
i=1
The clustering process is carried out by minimizing the objective function

n &

j=1i=1

under constraint (1). If the Euclidean distance between datum z; and prototype
p; is high, J,, is minimized by choosing a low membership degree near 0. If
the distance is small, the membership degree approaches 1. J,, is effectively
minimized by alternating optimisation, that is, we alternatingly minimize (2)
with respect to the prototypes (assuming memberships to be constant) and then
with respect to the membership degrees (assuming prototypes to be constant).
In both minimization steps, we obtain closed form solutions, for the prototypes:

Vi<i<e:

3)

and for the membership degrees:
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where I; = {k € N<.|z; = p}. The FCM algorithm is depicted in Fig. 1. For
a more detailed discussion of FCM and examples we refer to the literature, e.g.
2, 3].



Equi-sized, Homogeneous Partitioning 3

choose m > 1 (typically m = 2)
choose termination threshold € > 0
initialize prototypes p; (randomly)
repeat
update memberships using (4)
update prototypes using (3)
until change in memberships drops below &

Fig. 1. The FCM algorithm.

3 Equi-sized Clusters

It is often said that the k-means (as well as the FCM) algorithm seeks for clusters
of approximately the same size, but this is only true if the data density is uniform.
As soon as the data density varies, a single prototype may very well cover a
high-density cluster and thereby gains many more data objects than the other
clusters. This leads to large differences in the size of the clusters. Examples for
this phenomenon are shown in Fig. 2 for two data sets: On the left image, there is
a very high density cluster in the top left corner, on the right image, the density
decreases from left to right, so the rightmost cluster has only some data.
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Fig. 2. Results of the FCM algorithm on two data sets.

The idea of our modification is to include an additional constraint in the
objective function (2) that forces the clusters to cover the same number of data
objects. The size of cluster ¢ (number of data objects) corresponds to the sum of
the membership values Z?Zl u;;. In fact, since we have continuous membership
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degrees we may require
n
n
Ui = — 5
D ouy = (5)
J=1

for all ¢ € {1,...,c} even if n is not a multitude of ¢. This additional constraint
(5) is — together with the constraint (1) — integrated into the objective function
(2) via Lagrange multipliers. We then solve for the cluster prototypes and La-
grange multipliers by setting the partial derivatives to zero. This turns out to be
a difficult problem for the general case of an arbitrary value of m, therefore we
restrict ourselves to the case of m = 2, which is the most frequently used value
of m in FCM. Given our Lagrange function

L = Zzu?jdzj + ZOéj (1—2%‘]') + Zﬂ1 %—Zuij (6)
j=1 i=1 i=1 =1

i=1 j=1
we obtain as partial derivatives

oL
8uij

= Quijdij — aj — ﬁi =0 (7)

These equations, together with the constraints (1) and (5), lead to the fol-
lowing system of (¢-n + ¢+ n) linear equations for the variable w;;, o; and
B (te{l,...,¢c}, j € {1,...,n}). Empty entries indicate the value zero, RHS
stands for the right hand side of the equation.
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w4l 1 |...] 1 n/c
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In principle, this system of linear equations could be solved by a suitable
numerical algorithm. Even for small data sets with 200 data objects and 5 clus-
ters, this would mean that we have to solve a system of 1205 equations in each
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iteration step of the clustering algorithm, which is not acceptable in terms of
computational costs. However, it is possible to solve this system of equations in
a more efficient way.

When multiplying the equations for wug, ..., ug, by ﬁ7 ey ﬁ, respec-
tively, and then subtracting the resulting equations from the equation for » ; Uk
we obtain

" a; 1 n

J
— 4 — = —. 8
Z 2dkj 6k Z Qdkj C ( )
— =
From equation (7), we obtain
o + G

Uii = . 9
) 2d” ( )

Taking constraint (1) into account, yields

: a; 1 Bi
lzzuij: Zdw izd—

=1 1=1

leading to

i2 i +ﬁ§n) 1 n
> dr, k >
j=1 237 d::- j=1 2dy, ¢
and thus
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This induces a system of ¢ linear equations for the gy with coefficients

1
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7= 221 1 dzg

This system of linear equations can be solved by a suitable numerical al-
gorithm. The computation time is acceptable, since the number of equations is
equal to the number of clusters and therefore independent of the number of data.
Once the ; have been determined, we can compute the «; using equation (10)
and finally obtain the membership degrees based on equation (9). After all, we
arrive at the clustering algorithm depicted in Fig. 3.
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choose termination threshold € > 0

initialise prototypes p;

repeat
solve linear equation system (11) for 3
using 3, calculate o using (10), update memberships using (9)
update prototypes using (3)

until change in memberships drops below &

Fig. 3. The proposed algorithm.

Note that the boundedness of the membership degrees u;; € [0, 1] represents
an additional constraint on the objective function of FCM as well as the objective
function of our new algorithm. In the original FCM, however, it was not necessary
to consider it explicitly, because one can easily see from the resulting membership
degrees (4) that this condition is satisfied. It is not possible to conclude this
boundedness for the new membership degrees (9). It is clear, however, that
the influence of negative memberships will be rather small: Since the objective
function (2) and (6) uses only positive weights ufj, large negative values cannot
help in the minimization. We will comment on this in the following section.

4 Examples and Discussion

To illustrate the impact of our modified objective function, we show the results
of the new algorithm for the data sets shown in Fig. 2, where the standard FCM
algorithm yielded a result with high variation in the cluster size. The results
are shown in the left images of Figs. 4 and 6. By comparison to Fig. 2 we see,
that the high-density cluster has been split into two clusters (Fig. 4) and that
the data on the left of Fig. 6 is now distributed among four rather than three
clusters, such that the rightmost cluster gains more data. As expected, the sum
of membership degrees for each individual cluster equals .

Regarding the boundedness of the membership degrees u;; it turned out that
they actually take negative values. This is, of course, an undesired effect, because
then the interpretation of Z?Zl u;; as the size or number of data objects is not
quite correct. As conjectured in the previous section, it turned out on closer
examination that the total sum of negative weights is rather small. In both data
sets, the sum of all negative membership degrees was below 0.5% of the total
data set size n.

We want to illustrate the kind of situation in which negative membership
degrees occur with the help of the data set shown in Fig. 5. Consider the data
set is partitioned into three clusters. Since the leftmost cluster has an additional
data object x in the middle, it is not obvious how to distribute the data among
all clusters in equal shares.

Regarding the minimization of the sum of weighted distances, it would be
optimal to assign high membership degrees to all five data objects. This would,
however, violate the constraint that all clusters must share the same size. To get
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Fig. 4. Results of the new algorithm.

Fig. 5. A ’difficult’ example data set.

membership degrees as high as possible, the membership of all other data objects
(middle and right cluster) to this cluster are chosen slightly negative. Since the
sum of all membership values is constrained to be one, negative values for the
middle and right data allow us to have slightly higher degrees for the leftmost
data. On the other hand, having a negative membership degrees for some data
object x on the right forces us to increase other membership degrees of z (to
guarantee a sum of 1). This is possible almost at no cost, if z is close to the centre
of another cluster, because then we have a small distance value and increasing
the membership degree to this cluster does no harm in the minimization of (2).
(For a detailed discussion of the influence of the membership weight uj? see [4].)

To summarise: In a situation where an equi-sized partition is difficult to ob-
tain while minimizing at the same time the sum of weighted distances (2), the
cluster with too many data objects ’borrows’ some membership from data near
the centres of the other clusters. Figures 4 and 6 show this effect for the two
example data sets. The data for which negative membership values occur are
shown in a lighter shading. These data objects are all close to the respective
cluster prototype. And there is always one cluster without any negative mem-
bership degrees, which corresponds to the rightmost cluster in our example data
set in Fig. 5.

In all our experiments, the side effects of this trade off between minimizing (2)
and satisfying (5) were quite small, so we do not consider this as a major draw-
back of our approach. We can even make use of this information: By analysing
which cluster has no negative membership degrees at all, we can find out which



8 Frank Klawonn and Frank Hoppner

Fig. 6. Results of the new algorithm.

cluster tends to be 'too big’. When breaking ties in the final assignment of data
to clusters, it should be this cluster that gets more data objects than the other.

5 Conclusions

In this paper, we have considered the problem of subdividing a data set into
homogeneous groups of equal size. Finding homogeneous groups is a typical task
for clustering algorithms, however, if the data density is not uniform, such algo-
rithms usually tend to deliver clusters of unequal size, which is inappropriate for
some applications. We have proposed an algorithm that outperforms a popular
variant of k-means in that respect. Although we have only discussed the case of
equi-sized clusters, in principle it is also possible to subdivide the data set into
groups of any predefined size, which makes our approach quite useful for a range
of applications where capacity restrictions apply.
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