
Learning Temporal Rules from State Sequences
�

Frank Höppner
���

Department of Electrical Engineering and Computer Science
University of Applied Sciences, Emden

Constantiaplatz 4
D-26723 Emden, Germany

Abstract

In this paper we consider the problem of learning
rules about temporal relationships between labeled
time intervals. We learn these rules from a single
series of such labeled intervals, which might be ob-
tained from (multivariate) time series by extracting
various features of interest, for instance segments
of increasing and decreasing local trends. We seek
for the identification of frequent local patterns in
this state series. A temporal pattern is defined as
a set of states together with their interval relation-
ships described in terms of Allen’s interval logic,
for instance “A before B, A overlaps C, C over-
laps B” or equivalently “state A ends before state
B starts, the gap is covered by state C”. In the spirit
of association rule mining we propose an algorithm
to discover frequent temporal patterns and to gen-
erate temporal rules. As an application we consider
the problem of deriving local weather forecasting
rules that allow us to conclude from the qualita-
tive behaviour of the air-pressure curve to the wind-
strength.

1 Introduction
In computer-aided monitoring and control many variables are
measured. The plain record of the quantitative values over
time does not invoke appreciable levels of cognitive activ-
ity to a human. But by simple visual inspection of dis-
played trends the human operator is capable of controlling
the process [Bakshi and Stephanopoulos, 1995]. Skippers use
rules that consider the qualitative behaviour of the airpres-
sure curve for short-term local weather forecast [Karnetzki,
1999]. Other examples of rules using qualitative descriptions
of time-varying data can be found in the domain of med-
ical diagnosis [Guimarães and Ultsch, 1999], material sci-
ence [Capelo et al., 1998], or qualitative reasoning [Kuipers,
1994], to mention only a few. Such rules can be derived de-
ductively by means of a good understanding of the underlying
process – or inductively by observing the variables for a long

�

This work has been supported by the Deutsche Forschungsge-
meinschaft (DFG) under grant no. Kl 648/1.

���

Contact: frank.hoeppner@ieee.org

period of time. If we lack a good model but have a reasonable
amount of data, we might want to go the inductive way. This
is a typical knowledge discovery application.
Why qualitative descriptions at all? The problem of finding
common characteristics of multiple time series or different
parts of the same series requires a notion of similarity. If a
process is subject to variation in time (translation or dilation),
those measures used traditionally for estimating similarity
(e.g. pointwise Euclidean norm) will fail in providing useful
hints about the time series similarity in terms of the cogni-
tive perception of a human. It seems that a human breaks
a time series into suitable segments, such that all points in
each segment behave similar or follow the same local trend.
Each of these segments is usually simple in shape and easy
to grasp. The human labels or classifies them into a small
number of primitive shapes or patterns. Matching of time se-
ries is then performed on the basis of these labeled segments
rather than on the raw time series. The primitive patterns
can be defined a priori (for example “slightly increasing seg-
ment”) [Bakshi and Stephanopoulos, 1995; McIlraith, 1989;
Capelo et al., 1998], can be learned from a set of examples
(labeled training set) [Guimarães and Ultsch, 1999], or can
be found automatically by means of clustering short subse-
quences [Das et al., 1998]. Finally, we arrive at a sequence of
labeled intervals: time intervals in which a certain condition
holds in the original time series.
This paper considers the problem of discovering temporal re-
lationships between primitive patterns in time series in a fairly
general manner: A temporal pattern consists of a number of
states (the primitive patterns) and their temporal relationship
in terms of Allen’s temporal logic [Allen, 1983]. In the se-
quence of labeled intervals, we seek for frequent patterns in
a fashion that is similar to the discovery of association rules
[Agrawal et al., 1996], which has been extended to event se-
quences in [Mannila et al., 1997]. Given the frequent pat-
terns, rules about temporal relationships can be derived. As
an application of this algorithm, we consider the problem of
finding rules about the qualitative behaviour in multivariate
time series.
The outline of the paper is as follows: In section 2 we define
our notion of a state sequence. A subset of state intervals in a
state sequence can be characterized by means of their relative
positions to each other. This leads us to the definition of a
temporal pattern in section 3. Next, we consider the question

how often a pattern occurs in the state sequence in section
4. Adapting ideas from the discovery of association rules we
propose an algorithm to discover temporal patterns in section
5. An application example is given in section 6, before we
come to the conclusions in section 7.

2 State Sequences
Let
�

denote the set of all possible trends, properties, or
states that we want to distinguish, for example “pressure goes
down” or “water level is constant”. A state ��� � holds dur-
ing a period of time � ���	��
 where � and � denote the initial
point in time when we enter the state and the final point in
time when the state no longer holds. A state sequence on

�
is

a series of triples defining state intervals� ����	��������
�� � �����������	����
�� � �����	����������
�� � �����	�����	����
��������
where ����� ����!" and ���$#%��� holds. We do not require
that one state interval has ended before another state inter-
val starts. This enables us to mix up several state sequences
(possibly obtained from different sources) into a single state
sequences.
However, we do require that every state

� � � ������� �
 is maximal
in the sense, that there is no

� ��&��	���	��&�
 in the series such that
� ���'�����(
 and � �	&��	��&�
 overlap or meet each other:) � � � �	� � �	� �
�� � � & �	� & ��� &
��+*,#.-0/�� � �1� &32 � �546 � & (1)

If (1) is violated, we can merge both state intervals and re-
place them by their union

�87�9;:<� ���=���+&�
��	��� 7�>�?@� ���=�	��&�
+
 .
As an example, we could have classified the points in a time
series into qualitative states “increasing”, “decreasing”, and
“constant”. These three states partition the time series com-
pletely, that is, any state is continued without gap by another
state. But it is also possible to use only primitive patterns like
“increasing” and “highly increasing”. The missing patterns
(i.e. “decreasing”) will cause some gaps in the description of
a particular time series, but this does not hinder the analysis
of the state sequence. In what follows, we assume that such a
state sequence is given.

3 Temporal Patterns
We use Allen’s temporal interval logic [Allen, 1983] to de-
scribe the relation between state intervals. For any pair of in-
tervals we have 13 possible relationships; they are illustrated
in Figure 1. For example, we say “ A meets B ” if interval A
terminates at the same point in time at which B starts. The
inverse relationship is “ B is-met-by A ”. In the following we
will abbreviate the set of interval relations as shown in the
figure by C .
Given D state intervals

� ���+�	���'�����E
 , FG�H*I�JD , we can cap-
ture their relative positions to each other by an DLKMD matrixN

whose elements
N � *��E-�O describe the relationship between

state interval * and - . As an example, let us consider the
state sequence in Figure 2. Obviously state A is always fol-
lowed by B . And the lag between A and B is covered by
state P . Below the state interval sequence both of these pat-
terns are written as a matrix of interval relations. Formally, a
temporal pattern of size D is defined by a pair

� ��� N
 , where
�Q/SRTF��������=DVUXW � maps index * to the corresponding state,

A
B

A after B
A is-met-by B
A is-overlapped-by B
A finishes B
A during B
A is-started-by B
A equals B
A starts B
A contains B
A is-finished-by B
A overlaps B
A meets B
A before B

B before A
B meets A
B overlaps A
B is-finished-by A
B contains A
B starts A
B equals A
B is-started-by A

B finishes A
B is-overlapped-by A
B is-met-by A
B after A

B during A

time

Figure 1: Allen’s interval relationships.

and
N �GC,Y[Z\Y denotes the relationship between � ���=�	���E
 and

� �+&��	��&�
 1. By] 9�7^�`_
 we denote the dimension (number D of
intervals) of the pattern

_
. If] 9�7M�a_
 6cb , we say that

_
is a b -pattern. Of course, many sets of state intervals map to
the same temporal pattern. We say that the set of intervals
R � ���'�����=�����`
@d�FG�e*f�HDVU is an instance of its temporal pat-
tern
� ��� N
 . We define the space g _h� �
 of temporal patterns

over
�

informally as the space of all valid temporal patterns
of arbitrary dimension2.

A

A

B

B

A

A

B

B

C

C

C

A B

D

A

C

B

F

A

C

E B

time

=

o

b o

=
a

state interval sequence:

=

temporal relations:

= b

io
a = io

(abbreviations: a=after, b=before, o=overlaps, io=is-overlapped-by)

Figure 2: Example for state interval patterns expressed as
temporal relationships.

3.1 Partial Order on Temporal Patterns
Next, we define a partial order i on temporal relations. We
say that temporal relation

� ��jk� N jl
 is subpattern of
� ��mn� N mk

(or
� � j � N j
oi � � m � N m
), if] 9�7^� � j � N j
n�p] 9�7^� � m � N m

and there is an injective mapping q./rRTF����;���+] 9�7^� � j � N j
�UsW
R�F������;�] 9�7X� � m � N m
�U such that
) *��E-��tRTF����;���+] 9�7M� � j � N j
�Uu/ N j � *��(-�O 6 N m � q � *'
��=q � -v
EO

The relation i is reflexive and transitive, but not antisym-
metric: we can have

� ��jk� N jl
si � ��mw� N mx
 and
� ��m3� N mx
3i� � j � N j
 without � j 6 � m and

N j 6 N m due to a
different state ordering. But permutating the states does

1To determine the interval relationships we assume closed inter-
vals y z	{'|'}�{�~

2Conditions for a valid temporal pattern are, for instance, that� y ��|a��~ is always the inverse of
� y ��|���~ .

not change the semantics of the temporal pattern. There-
fore, we define

� � j � N j
 � � � m � N m
 / � � � j � N j
 i� ��mn� N mx
�� � ��m3� N mx
5i � ��j5� N jl
 and consider the factorisa-
tion
�����	��
����� ��� ���
 , where i has been generalized canoni-

cally to equivalence classes. Then, � ��� is also antisymmetric
and thus a partial order on (equivalence classes of) temporal
patterns.

3.2 Normalized Form of a Temporal Pattern
To simplify notation we pick a subset �Mg _h� �
�� g _h� �

of normalized temporal patterns such that �Mg _h� �
 con-
tains one element for each equivalence class of

���	��
��� �
and
� �Mg _h� �
���in
 is isomorphic to

�����	��
����� ��� ���
 . In the
remainder, we will then use

� �Mg _h� �
���in
 synonymous to�����	��
����� ��� ���
 .
The intuitive idea is to order the state intervals in time with
increasing index. However, this ordering is slightly more
complex with arbitrary intervals than with points. Given an
ordering of states, we say that a temporal pattern

� � j � N j

has normalized form, if for all FL� * �] 9�7^� � j � N j
 and
*,#�-h�1] 9�7^� ��j5� N jV
 the following conditions hold:
� Case 1: � � *'
 6 � � -v
 . If we have two intervals with

identical states, then by the maximality assumption (1)
there must be a time gap between the intervals, oth-
erwise we could merge both state intervals into a sin-
gle new one, which contains both intervals. There-
fore, in this case we have only two possible relationsN � *	�E-�O �.R before, after U . To preserve temporal ordering
we require

N � *	�E-�O 6 before.
� Case 2: � � *�
 46 � � -v
 .

– Case 2a: distinct initial times. If the ini-
tial times of both intervals are different, we
use the ordering of the initial times, that
is, in a normalized form we have

N � *��E-�O �
R contains, is-finished-by, overlaps, meets, before U
(cf. Figure 1).

– Case 2b: initial times coincidence. Thus we haveN � *��(-�Ok� R equals � starts � is-started-by U . If both in-
tervals are identical, we use the order on the states,
that is, in a normalized form we require � � *'
k#p� � -v

(note that we are sure that � � *'
 46 � � -v
 in this sub-
case). If the final times are different, we requireN � *��(-�O 6 is-started-by to make sure that the inter-
val with index * ends before the interval with index
- .

4 Occurrences of Temporal Patterns in State
Sequences

To be considered interesting, a temporal pattern is limited in
its extension, that is, the whole pattern has to be small enough
to be observed by an operator. We therefore choose a max-
imum duration � max, which serves as the width of a sliding
window which is moved along the state sequences. We con-
sider only those pattern instances that can be observed within
this window. In a monitoring and control application, this
threshold could be taken from the maximum history length

that can be displayed on the monitor and thus be inspected by
the operator.
Note, that this does not necessarily mean, that the end points
of a set of state intervals

_ / 6 R � � � �	� � ��� �
@d�F � *X� DVU ,
differ by no more than � max. Denoting the temporal extent (or
duration) of

_
by

� �a_
k/ 6 7h>�? R��Id � ���	������
k� _ U � 7�9;: R��ld � ���	���	��
x� _ U��
we do not have

� �a_
s�!� max in general. Figure 3 illustrates
this fact in case there are intervals with a length that exceeds
� max (window drawn with solid lines). State A lasts for a time
period that is longer than � max, nevertheless we can observe
the pattern “D after C, A contains C and D” within the win-
dow. The pattern “ B before P ” in the window drawn with
dashed lines is another example where we can observe the
pattern although

� �a_
�"#� max. However, we can not (yet)
observe “ A contains P ” in the dashed window, because the
final time of P is not yet visible – the pattern may also repre-
sent an overlaps or finishes relation.

act

sliding window

maxt t

time

A

CF

B

CD

A

C

Figure 3: Sliding a window of width � max along the state se-
quence.

We define the total time in which the pattern can be observed
within the sliding window as the support $�%&& �`_
 of the pat-
tern
_

. Let us illustrate this definition with some examples in
Figure 4. In subfigure (a) we have a single state B . We see
the pattern for the first time, when the right bound of the slid-
ing window touches the initial time of the state interval (dot-
ted position of sliding window). We can observe B unless the
sliding window reaches the position that is drawn with dashed
lines. The total observation time is therefore the length of the
sliding window � max plus the length of state interval B . The
support (observation duration) is depicted at the bottom of the
subfigure.
Subfigure (b) shows another example “ A overlaps B ”. We
can observe an instance of the pattern as soon as we can see
state B and we loose it when A leaves the sliding window.
If the pattern occurs multiple times, two things may happen:
If there is a gap between the pattern instances, such that we
loose the pattern in the meanwhile, then the support of the
individual instances add up to the support of the pattern, as
shown in subfigure (c). If there is no such gap (subfigure (d)),
we see the pattern as soon as a first instance enters the slid-
ing window until the last instance leaves the window. In the
meantime, it does not matter how many instances are present,
as long as there is at least one.
If we divide the support of a pattern by the length of the state
sequence plus the window width � max we obtain the relative
frequency ' of the pattern: If we randomly select a window

A

B

A

B

A

B
d)

c)

b)

a)

time

B

A

support
time

time
supportsupport

support
time

A A

B B

support

A

Figure 4: Illustration of our notion of support.

position we can observe the pattern with probability ' . Also
note that there is no need for discretization, we can handle
time continuously by jumping from interval bound (initial or
final time) to interval bound and integrating the support over
the jump period. This is because observability of a pattern
changes only if the sliding window meets one of the interval
bounds.

5 Discovery of temporal rules
A pattern is called frequent, if its support exceeds a thresh-
old $�%&& min. The task is to find all frequent temporal patterns
in �Mg _h� �
 , from which we then create the temporal rules.
To find all frequent patterns we start in a first database pass
with the estimation of the support of every single state (also
called candidate 1-patterns). After the b th run, we remove all
candidates that have missed the minimum support and create
out of the remaining frequent b -patterns a set of candidate� b � F�
 -patterns whose support will be estimated in the next
pass. This procedure is repeated until no more frequent pat-
terns can be found. The fact that the support of a pattern is
always greater or equal to the support of any of its subpatterns
)

patterns
_ ���J/ � i _ 2 $�% && � �
�� $�%&& �`_
 (2)

guarantees that we do not miss any frequent patterns. At this
level of detail the procedure is identical to association rule
mining [Agrawal et al., 1996].

5.1 Candidate Generation
The number of potential candidates grows exponentially with
the size b of the patterns. Efficient pruning techniques are
therefore necessary to keep the increase in the number of can-
didates moderate. We use three different pruning techniques.
The technique that is used for the discovery of association
rules [Agrawal et al., 1996] can still be applied to temporal
patterns: Due to (2), every b -subpattern of a

� b � F�
 -candidate
must be frequent, otherwise the candidate itself cannot be fre-
quent. To enumerate as few non-candidate

� b � F�
 -patterns

N � � � ���
 �����	� � � b � F�
 '
� � ���

... A B
� � � b � F�

' P 6
(a) Pattern �

N	� � � ���
�������� � � b � F�

� � ���

... A �
� � � b � F�

 � 6
(b) Pattern

N�� � � ���
�������� � � b � F�
 '

� � ���

... A B �
� � � b � F�

' P 6 r

 � ir 6

(c) New pattern �

Figure 5: Generating a candidate
� b � F�
 -pattern � out of

two b -patterns
_

and � that are identical when restricted to
the first b � F states.

as possible, we join any two frequent b -patterns
_

and � that
share a common

� b � F�
 -pattern as a prefix. Let us denote
the remaining states in

_
and � besides those in the prefix

as ' and
 respectively. We denote the interval relationship
between ' and
 in the candidate pattern � 6 � � � � N �
 asN	� � b � b � F�O 6�� . Figure 5 illustrates how to build the

� b � F�
 -
pattern matrix

N	�
out of

N � and
N	�

. Since
N � and

N	�
are

identical with respect to the first b � F states in normalized
form, the same is true for the new pattern � (indicated by the
same submatrix A). The relationship between ' and
 and the
first b � F states can also be taken from

N � and
N	�

. Thus,
as we can see in Figure 5(c), the only degree of freedom is� . From the

� b � F�
 -pattern prefix and the two states ' and

 we thus can build up a

� b � F�
 -pattern which is completely
specified up to the relation between ' and
 .
The freedom in choosing � yields 13 different patterns that
might become candidate

� b � F�
 -patterns, because there are
13 possible interval relationships. Since we can restrict our-
selves without loss of generality to normalized patterns � ,
the number of possible values for � reduces to a maximal
number of 7. Before we check each of the seven

� b � F�
 -
patterns for frequent b -subpatterns, we apply another prun-
ing technique based on the law of transitivity. For exam-
ple, the two 2-patterns “A meets B” and “A meets C” share
the primitive 1-pattern “A” as a common prefix. We have
to fix the missing relationship between B and P to obtain

a 3-candidate. The law of transitivity for interval relations
[Allen, 1983] tells us that the possible set of interval relations
is R is-started-by � equals � starts U . In normalized form, only 2
out of 7 possible relationships remain. In general, for each
state � � *'
 of the first b �pF states we apply Allen’s transitiv-
ity table to the relationship between ' and � � *'
 (N � � b �=*(O) and
� � *'
 and
 (

N � � *	� b O). Only those values for � that do not con-
tradict the results of the b �pF applications of the transitivity
table yield a candidate pattern.
Finally, for every temporal pattern � we maintain an ob-
served and expected support set

� �
and � � , resp. The set� �

contains all points in time that contribute to the support
of the pattern � , that is, all points in time in which the pat-
tern can be observed in the sliding window. Before we con-
sider a

� b � F�
 -pattern
_

as a candidate pattern, we inter-
sect3 all sets

� �
of all b -subpatterns � of

_
. The result

gives us the expected support of
_

in � � . The cardinality
of � � serves as a tighter upper bound of the support of

_
than
7�9;: R � � d �Ji _ �] 9�7^� �u
 6 b U does. If it stays below

$�%&& min the pattern cannot become a frequent pattern, there-
fore we do not consider it as a candidate.

5.2 Support Estimation
In order to estimate the support for the candidate patterns,
we sweep through the state sequence and incrementally up-
date the list of states which are currently visible in the sliding
window. We also update the relation matrix for the states in
the sliding window incrementally. By � act we denote the right
bound of the sliding window.
The set of candidate patterns is partitioned into three subsets,
which we call the set of passive, active, and potential can-
didates. The set of passive candidates contains those candi-
dates
_

that we do not expect in the current sliding window
because the expected support does not contain the time of the
current window position, that is, � act 4� � � . The set of poten-
tial candidates contains those candidates for which we have
� act � � � , that is, there is a chance of observing

_
in the win-

dow. Finally, the set of active patterns contains those patterns
that are currently observable in the sliding window.
At the beginning all patterns are passive patterns. Associated
with every pattern we have the set of expected support � � ,
we therefore know in advance when the pattern will become a
potential pattern, namely at activation time � � 6 7�9;: R �@d �k�
� � U . If the set � � is organized as a sorted list of intervals,
the minimum is simply the left bound of the first interval in
the list. We keep the set of passive patterns ordered by their
activation time. Whenever � act reaches the activation time of
a pattern

_
,
_

becomes either a potential or active pattern,
depending on whether

_
occurs in the sliding window or not.

When
_

becomes a potential pattern, we remove the leading
interval from the � � list and store the deactivation time � �
(end of the interval), because at that time the pattern will fall
back into the set of passive patterns.
A potential pattern

_
becomes a passive pattern if the fall

back-time � � has been reached by the sliding window. When-

3The sets ��� and ��� can be organized as lists of intervals. The
intersection is also a list of intervals. We only have to add up the
interval lengths to obtain the cardinality.

ever a new state interval enters the sliding window, we check
for all potential patterns if an instance of the pattern can be
found. If this is the case, the potential pattern becomes an
active pattern, otherwise we keep it as a potential pattern. If
a pattern instance has been found, we calculate the point in
time when the pattern disappears and use it as the fall back-
time for the active pattern.
Just like the set of passive patterns, the set of active pat-
terns is sorted by their fall back-times. Whenever � act reaches
the fall back-time of an active pattern, we check whether a
new pattern instance has entered the sliding window in the
meanwhile. In this case the pattern remains an active pattern,
but we update the fall back-time. Otherwise, depending on
whether � � # � act or not, the active pattern becomes a poten-
tial or passive pattern.
Whenever a pattern instance has been found, the support of
the pattern is incrementally updated, that is, we insert the pe-
riod of pattern observation (the support) into

�	�
. Since we

have an upper bound of the remaining support (namely the
cardinality of the continuously updated set � �), we can per-
form a fourth online pruning test. If the support achieved
so far (card

� � �
) plus the maximally remaining support
(card
� � �
) drops below $�%&& min we do not consider the pat-

tern any longer. At the end of each database pass, the set � �
is empty and

� � contains the support of
_

, which is then
subsequently used in the next candidate generation step for
pruning.

5.3 Rule Generation
After having determined all frequent temporal patterns, we
can construct rules ��
W� from every pair

� �G���f
 of fre-
quent temporal patterns with � i�� . We restrict ourselves
to “forward rules”, that is, rules that make conclusions in
the future rather than in the past. If the confidence of the
rule ��� :���� A W Bf
 6�������� � m �������� � j � is greater than the minimal
confidence, the rule is printed. Enumeration of all possible
rules can be done efficiently using techniques described in
[Agrawal et al., 1996].

5.4 Disjunctive Combination of Temporal Patterns
When analysing the rules obtained by the algorithm, we must
keep in mind that we were seeking for the simple interval
relationships only, that is, those relationships that consist of
a single attribute � �GC . If a process B is started some time
after A has started, then this can result in a number of rules
“ AeW B ” with temporal relationsships overlaps, meets, and
before. The confidence of the true relationship (which is in
this case: A overlaps/meets/before B) might be very high,
but the confidence values we observe for the three rules we
have found are comparatively low. We are not allowed to add
up the confidence values of all three rules in order to obtain
the confidence of the composed rule. This would lead to an
overestimation, because there might be sliding windows that
contain multiple of these patterns simultaneously, and in this
case we would count them twice (or more).
Theoretically, we could also consider the more complex rela-
tionships during the discovery process, but probably the com-
binatorial explosion of candidate patterns cannot be pruned
appropriately any longer (��� possible interval relationships in

normalized form instead of
�
). Fortunately, it is not neces-

sary to consider all these combinations during the execution
of the algorithm, since we can calculate the support of com-
posed rules afterwards. The support of a pattern

_
that is the

disjunction of two patterns � and
N

can be calculated easily
as $�%& & �a_
 6 card

� � ��� ���
 . The sets of observed support� �
and

� �
have been calculated already during the execu-

tion of the algorithm, all we have to do is to store the sets for
later access.
(Note that we cannot guarantee that we will find all frequent
pattern compositions in this way. Several patterns that do not
reach $�%&& min individually might fulfill this requirement after
their combination.)

6 Evaluation and Discussion
We have examined air-pressure and wind strength/wind di-
rection data from a small island in the northern sea4. From
the time stamps we have also extracted the season. It is well
known that local differences in air pressure are the cause for
wind, therefore we should find some relationships between
these variables. The features have been measured hourly and
we used three years of data from 1981-1983.
We have applied kernel smoothing in order to compensate for
noise and to get more robust estimates of the first and sec-
ond derivative. Then, the smoothed series have been parti-
tioned into primitive patterns. To encourage meaningful find-
ings of temporal patterns, we tried to simulate the way a hu-
man would partition the time series. In a first stage, the air
pressure curve has been segmented into increasing, level, and
decreasing segments. Among the increasing segments, if the
derivative is larger than 50% of all values measured for in-
creasing derivatives, we refine them by an additional state
“highly increasing”, if it is larger than 80% we speak of “very
highly increasing”. As an alternative to this overlapping state
definition, we could have defined an exclusive partition “very
highly incr.”, “highly incr.”, “increasing”, etc. However, hav-
ing chosen the threshold values heuristically, we cannot be
sure that we have chosen them meaningful (with respect to
some patterns we want to discover). As we will see in the fol-
lowing example, if we are not sure about the threshold values
used to define the states, the hierarchical definition is prefer-
able over the exclusive. There is a pattern “highly increasing
segment meets level segment meets highly decreasing seg-
ment” in the time series depicted in Figure 6. If the threshold
values for the derivatives have not been chosen appropriately,
the increasing flank of the second wave will not be classified
as “highly increasing”. But if we use the state series “A” in
Figure 6, we will at least discover the pattern “increasing seg-
ment meets level segment meets highly decreasing segment”.
If we choose the exclusive state definition “B” in Figure 6,
the depicted state series contributes only partially to the sup-
port of both discussed patterns. If we have badly chosen some
threshold values, with a hierarchical state definition we can at
least be sure that we will find a similar pattern in terms of the
employed state hierarchy.
In addition to states that characterize the slope, we used some
states that address the second derivative of the air pressure

4Helgoland, 54:11N 07:54O

A
(hierarchical)

high-inc

(exclusive)
B

high-dec dec lvl inc high-inc

high-dec

0

0
first derivative
domain oflvldec inc

state definitions for slope

t

series
time

highly incr.
increasing
level
decreasing
highly decr.

state series (using states definition B)

highly incr.
increasing
level
decreasing
highly decr.

state series (using states definition A)

Figure 6: Two ways of partitioning a time series.

curve. High values in the second derivative can be used
to distinguish sharp peaks from flat hills, for example. To
simplify the notation, we will use the following state abbre-
viations: dec, lvl, inc for decreasing, constant, and in-
creasing trends, respectively. ccv and cvx denotes concave
and convex curvature. An additional suffix -high is used
for highly increasing (inc-high) or higly concave (ccv-
high) segments, etc. A suffix -w, -p, -d indicates that the
segments refers to the wind strength, air pressure, or wind
direction curve, respectively.
The window width � max was chosen to be 48 hours, $�%&& min

6
��� of the total time of three years, ��� :�� min

6�� � � . The
calculation took 18 minutes on a 64MB laptop computer with
a Pentium II Mobile processor running Linux. As usually in
the context of rule mining, we have found a large number of
rules. Due to lack of space, here are only some exemplary
rules.
Autumn is known for its strong winds, and thus we can find
rules like this:

autumn, inc-high-w 	 inc-v-high-w

with the temporal relationship autumn contains inc-
high-w, and inc-high-w contains inc-v-high-w,
which might be depicted as

autumn
inc-high-w

inc-v-high-w
The confidence of this rules is about 51% and it can be ap-
plied in 15% of all sliding window positions. If the minimum
confidence is small enough, we obtain the same rule for all
other seasons, too, but with much lower confidence.
As expected from [Karnetzki, 1999], we have also found
many rules that reflect the relationship between change in air

pressure and change in wind strength. Here is a rule to fore-
cast highly increasing wind strength that can be applied in 5%
of the time series with a confidence value of 94%:

cvx-p, dec-high-p, dec-p 	 inc-high-w

cvx-p
dec-high-p

dec-p
inc-high-w

An example for the phenomenon described in Section 5.4 is
the following rule:

ccv-p, ccv-high-p 	 inc-high-w

with the temporal relationships depicted by
ccv-p

ccv-high-p
inc-high-w

and
ccv-p
ccv-high-p

inc-high-w
The two rules differ in the premise, where we have an equals
relation in the first rule (confidence 55%, applicability 3.7%)
and a is-finished-by relation in the second rule (confidence
45%, applicability 5.6%). A disjunctive combination of both
rules increases the confidence significantly. Interestingly,
there is no rule “ccv-high W inc-high-w” (when using
a confidence level of 40%). This emphasizes the importance
of the concave segment, which in both rules is finished by the
highly concave segment. If there is a highly concave segment
during a concave segment, there seems to be a much lower
probability for highly increasing winds in this pattern. Also
note that we would not have detected these rules if we had
chosen an exclusive state definition.
However, with many rules the confidence values are compar-
atively low. This is not necessarily because the conclusion of
a rule was not present, but may also come from the fact that
longer patterns (premise and conclusion) get lower support
values than shorter patterns (premise only). Compensating
this effect is a major topic for future work.

7 Conclusion
We have proposed a technique for the discovery of tempo-
ral rules in state sequences, which might stem from multi-
variate time series for instance. The examples in section 6
have shown that the proposed method is capable of finding
meaningful rules that can be used as rules-of-thumb by a hu-
man, but also in a knowledge-based expert system. The rules
can be easily interpreted by a domain expert, who can verify
the rules by means of its background knowledge or use them
as an inspiration for further investigation. Even if there is
already considerable background knowledge, the application
of this method might be valuable, for example if the known
rules incorporate more variables than available in a specific
technical system. For example, weather forecasting rules as
discussed by Karnetzki [1999] also use information about the
general weather outlook (cloudiness) or information from the
local weather forecasting station. Such information might be
difficult to incorporate or expensive to measure, and in such

a case one is interested in how much one can achieve by just
using the available variables.
As our next step, we will focus on the enrichment of the qual-
itative rules with quantitative (discriminating) values, for ex-
ample: “if the air pressure falls quickly for more than 2 hours,
the wind strength will increase within 1 hour.”

Acknowledgements I would like to thank Prof. Frank Kla-
wonn for fruitful discussions, and the Deutsche Wetterdienst
for providing the data.

References
[Agrawal et al., 1996] Rakesh Agrawal, Heikki Mannila,

Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri
Verkamo. Fast discovery of association rules. In [Fayyad
et al., 1996], chapter 12, pages 307–328. MIT Press, 1996.

[Allen, 1983] James F. Allen. Maintaing knowledge about
temporal intervals. Comm. ACM, 26(11):832–843, 1983.

[Bakshi and Stephanopoulos, 1995] Bhavik R. Bakshi and
George Stephanopoulos. Reasoning in time: Model-
ing, analysis, and pattern recognition of temporal process
trends. In Advances in Chemical Engineering, volume 22,
pages 485–548. Academic Press, Inc., 1995.

[Capelo et al., 1998] Antonio C. Capelo, Liliana Ironi, and
Stefania Tentoni. Automated mathematical modeling from
experimental data: An application to material science.
IEEE Trans. on Systems, Man, and Cybernetics, Part C,
28(3):356–370, August 1998.

[Das et al., 1998] Gautam Das, King-Ip Lin, Heikki Man-
nila, Gopal Renganathan, and Padhraic Smyth. Rule dis-
covery from time series. In Proc. of the 4th Int. Conf.
on Knowledge Discovery and Data Mining, pages 16–22.
AAAI Press, 1998.

[Fayyad et al., 1996] Usama M. Fayyad, Gregory Piatetsky-
Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, ed-
itors. Advances in Knowledge Discovery and Data Mining.
MIT Press, 1996.

[Guimarães and Ultsch, 1999] Gabriela Guimarães and Al-
fred Ultsch. A method for temporal knowledge conver-
sion. In D. J. Hand, J. N. Kok, and M. R. Berthold, ed-
itors, Advances in Intelligent Data Analysis, Proc. of the
3rd Int. Symp., pages 369–380, Amsterdam, The Nether-
lands, 1999. Springer, Berlin.

[Karnetzki, 1999] Dieter Karnetzki. Luftdruck und Wetter.
Delius Klasing, 3 edition, 1999.

[Kuipers, 1994] Benjamin Kuipers. Qualitative Reasoning
– Modeling and Simulation with Incomplete Knowledge.
MIT Press, 1994.

[Mannila et al., 1997] Heikki Mannila, Hannu Toivonen,
and A. Inkeri Verkamo. Discovery of frequent episodes
in event sequences. Technical Report 15, University of
Helsinki, Finland, February 1997.

[McIlraith, 1989] Sheila A. McIlraith. Qualitative data mod-
eling: application of a mechanism for interpreting graphi-
cal data. Computational Intelligence, 5:111–120, 1989.

