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�

Abstract.
This paper sketches an approach to learn interdependencies be-

tween multiple time series. At the beginning the time series are seg-
mented and thereby transformed into sequences of labeled intervals.
The labels denote qualitative aspects of the signal in the respective
intervals. Then, from the sequence of labeled intervals, we discover
rules where premise and conclusion consist of temporal patterns. The
temporal patterns are sets of intervals where Allen’s interval logic is
used to capture their temporal relationships. Rules are specialized
with respect to numerical attributes like the length of the intervals or
the slope of the signal within the interval. Finally, we obtain rules
like “when signal A decreases while signal B increases with slope
greather than 2 then signal C will decrease”. Since humans use a
similar syntax when discussing such aspects, the proposed method-
ology may support a human in learning dependencies in multivariate
time series.

1 INTRODUCTION

Humans prefer reasoning on a more abstract, symbolic level over
digging deeply in large tables of numerical values. This is especially
true when dealing with multivariate time series that were measured
over a long period of time, which is the kind of data that we will
consider in this paper. If an expert of the field is available, thanks
to her or his background knowledge she or he knows the kind of
patterns that are important and worth looking for. The occurrence or
absence of such patterns is then the basis for further decision making.
Typical application areas are computer aided monitoring and control
of technical systems and medical diagnosis and surveillance.

Now, let us assume that we have no expert at hand, either because
there are rather few of them or we deal with new systems or ob-
servations no-one is experienced with. What would we do in such a
case? Probably we would scan the readings by eye in order to iden-
tify frequently repeating patterns (probably corresponding to normal
situations) as well as seldom patterns (probably indicating some ab-
normal situation). Having found a vocabulary of patterns, next we
could try to find dependencies about them, say, a specific pattern in
time series A preceedes another pattern in time series B. Such kind
of information can then be analyzed in greater detail to see if there is
some causal relationship. The more we get used to the patterns, the
more we are able to further differentiate the patterns (e.g. to discrim-
inate situations), that is, we start to look at details like the steepness
of the curve or the duration of some features.

In this paper, we propose a way to support a human in this task.
It provides assistance in focussing more quickly on the “interesting
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things” and uses a notion of patterns a human is already familiar
with. The methodology can be sketched in three steps. Starting with
an initial set of labels or descriptions (addressing qualitative features
like “increasing” or “decreasing”) we extract segments (intervals in
time) in the time series that are conform to these labels (section 2).
Thereby the sequences of numerical values will be transformed into
sequences of labeled intervals. This more abstract representation has
the advantage that we can easily match similar segments at differ-
ent locations (by their label) and do not have to use computationally
expensive methods like dynamic time warping [21, 24]. Next, the
interval sequence will be used to induce multivariate temporal pat-
terns, which will be formalized via Allen’s interval logic [2]. From
the patterns and their frequency we can derive rules about pattern de-
pendencies (section 3). Finally, once we have identified interesting
rules, we may want to further specialize the qualitative symbols with
quantitative values (section 4) and restart the process.

2 QUALITATIVE DESCRIPTIONS

Starting from numerical time series, the first task is to abstract from
the raw signal to a more condensed, qualitative description. The kind
of patterns an expert would look for strongly depends on the ap-
plication area, of course. However, since we have been teached in
school to sketch a function by analyzing the zeroes in the first and
second derivative, we can find descriptions like “linearly increasing
segment” or “convexly decreasing segment” quite often when listen-
ing to the explanations of an expert – and this is independent of the
domain. Therefore, we want to use the zero-crossings in the first few
derivatives to segment the time series into increasing/decreasing and
convex/concave parts.

Then, dealing with noise becomes one of the most important prob-
lems, because noise introduces many zero-crossings and thus frag-
ments the time series into many tiny segments rather than a few long
ones that correspond to the perceptually salient features. But to sup-
port a human in the analysis of time series, the extracted features have
to be similar to those features a human would identify in the data.
Although the abstraction is “only” a preprocessing step, the usefu-
leness of the subsequent findings strongly depends on the appropri-
ateness of the abstraction and thus the correct handling of noise. To
make things even more complicated, our assumption in knowledge
discovery (KDD) is that we do not have the necessary knowledge to
finetune the parameters of a time series abstraction method nor can
we assume that these parameters do not change over time (especially
when examining very long time series). This makes noise elemina-
tion extremly difficult.

Many different methods have been used for time series abstrac-
tion in the literature, for instance, piecewise linear approximation
is a very popular and efficient technique [14, 6, 10], because the
piecewise linear representation is easy to understand and easy to



process. Local trend information (increasing, steady, decreasing, ex-
trema) may be extracted, and from a sequence of increasing segments
we may try to locate the position of inflection points. However, these
approximation methods, as well as many other, require either the a
priori specification of the number of segments or a maximum error
bound for each segment (regardless whether uniform or least-squares
approximation is used). Such parameters are difficult to fix a priori or
even contradict our assumption that the noise ratio may change over
time. Other approaches try to attack the problem of noise by impos-
ing constraints on the smoothness of the approximating curve. But
usually there is a number of distinct physical processes that collec-
tively influence the appearance of a signal. Among them there may
be system failures that manifest in a similar way as noise does (sharp
peaks). Then, imposing smoothness constraints leads to a blurring
of such peaks. While it may be useful to have some parameters to
finetune the approximation to an experts understanding in some ap-
plications [18], here we are in need of a method that does not require
such parameters or assumptions.

We use scale-space filtering [25, 16] to derive our symbolic de-
scription, a technique that is well-known in image analysis but less
frequently used in 1D-signal analysis and almost unknown to the
KDD community. Instead of uniform or least-squares approximation,
kernel smoothing is applied to cancel noise. The problem of an er-
ror threshold selection can be reformulated as a variation of a scale
parameter, that is, smoothing the signal with a filter of varying size.
As before, for different sizes (scales) we get different smoothed sig-
nals and thus obtain different qualitative descriptions. Intuitively, the
greater the scale gets, the smoother becomes the signal. So we have
a scale parameter to fix and thus have not gained any advantage so
far. But what if we analyse multiple curves at different degrees of
smoothing simultaneously? Recall that we are in need of a procedure
that helps us in distinguishing noise from important features in the
time series: If we observe the number of smoothing operations that
are necessary to remove an extremum, we can conclude about the
perceptual salience of the feature: If a feature disappears quickly af-
ter little smoothing, it was probably noise, but if it persists against a
large number of smoothing operations, it seems to be a perceptually
salient feature. This idea has been formulated by Witkin [25], who
considers the signal at multiple scales and observes at which scale
zero-crossings vanish. From the scale interval during which a feature
is observable we can derive a measure of feature stability. Since we
are interested in a robust method, we should not take features into
account that can be observed in a very limited range of scales only,
but should choose those features that survive over a broad range of
scales. Witkin has shown empirically, that feature stability and its
perceptual salience are related. This stability criterion is therefore
well-suited to handle the problem of noise and perform signal ab-
straction in a way that is close to the human perception.

2.1 Compensating Dislocation

As already indicated, we want to select features that persist over a
broad range of scales to build up our symbolic signal description.
It is well known, that smoothing dislocates features. (This is not a
particular problem of kernel smoothing, but also occurs with uni-
form or least-squares approximation.) As long as we consider a sig-
nal at a single scale only, we may want to ignore these dislocations.
However, when comparing signals at different scales, this disloca-
tion may become a problem: Consider a case where the length of a
linearly decreasing segment has some discriminative power, and that
due to varying noise levels different scales are used to extract such

(a) A signal with varying noise.
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(b) Location of zero-crossings versus scale (size of filter).
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(c) Interval Tree of Scales.

Figure 1. Multiresolution analysis of a signal.



segments. Then, the start and end point of the segment will be dis-
located by different degrees. The dislocation hinders the detection of
such dependencies, or makes it impossible in the worst case.

Figure 1(a) shows a time series and figure 1(b) its zero-crossing
contours, that is, the location of the zero crossings as the scale pa-
rameter varies. If no dislocation would take place, all these lines
were perfectly straight. In scale-space filtering, a unified description
is produced from the scale-space image by treating each contour as
a single physical event rather than a set of unrelated events. This al-
lows us to compensate the temporal distortion of the zero-crossings
at coarser scales: we use a coarser representation to identify impor-
tant features (since they are more robust against smoothing), and use
coarse-to-fine tracking to localize the features exactly in the original
time series. Having identified the true locations, we can propagate
them from the zero scale up to higher scales, thereby turning all con-
tours into straight lines, as shown in figure 1(c).

In our argumentation we assumed that iterative smoothing can
only remove zero-crossings but does not introduce new ones: This
corresponds to the fact that all lines in figure 1(b) can be traced down
to scale 0, that is, a zero-crossing in the original curve. If smoothing
would introduce new zero-crossings somewhere, we would obtain
lines that do not correspond to features in the original signal. This
is not desirable, because we do not want to argue about phenomena
that are apparently not present in our data. The assumption we have
made corresponds to what we intuitively expect from a smoothing
operation, but it is not the guaranteed if we perform kernel smooth-
ing with arbitrary filters. To illustrate that smoothing with some filter
coefficients may be counterintuitive, let us consider the example in
figure 2, which shows a short time series on the left and the result
after applying three different smoothing filters on the right [16]. In
the non-constant part of the curve we have 3 extrema in the original
curve (min - max - min). For the uniform filter with three coefficients
(case a), the number of extrema has increased from 3 to 5 (min - max
- min - max - min), whereas other filters (case b and c) behave as
we have expected. Result (a) contradicts our intuition: our objective
was to make the curve smoother (and thus simpler), but we obtained
a curve with even more extrema. It has been shown in [3] that for the
continuous case the Gaussian kernel is the only kernel that guaran-
tees that no zero crossings will be introduced in the smoothed signal.
For the discrete case, Lindeberg [16] characterizes the scale-space
kernels that guarantee this property. Only when using such a kernel,
we can track down all zero-crossings in an arbitraty scale to a zero-
crossing in the original signal, as shown in figure 1(b).

However, we are not interested in the zero-crossings themselves,
but the intervals bounded by them. We use the fact that zero-crossings
always disappear pairwise (we cannot have two minima without a
maximum in between), as it is shown schematically in figure 3. As
the scale decreases, the interval between two zero-crossing either
persists, or is subdivided by two new zero-crossings into three subin-
tervals. Thus we can construct a tree describing the successive par-
titioning of the signal into finer subintervals as new zero-crossings
appear at finer scales. The resulting (ternary) tree is called interval
tree of scales [25] and is shown in figure 1(c). The “

�
” and “ � ”

signs in the rectangles indicate whether the segment between the
zero-crossings represents an increasing or decreasing segment. The
rectangles tesselate the time-scale plane completely.

2.2 Stable Features

Since we are interested in the robustness of the extracted features,
we want to use the scale-space lifetime over which an time in-
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Figure 2. Application of various filters to the signal on the left (filter
coefficients from top (a) to bottom (c): � ���� ���� ���� , � ��	� ��
� , � �� � ��	� �� � ).
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Figure 3. Iterative smoothing (increasing the scale) makes zero-crossings
disappear pairwise.

terval persists as a measure of robustness or significance. For the
continuous case the scale-space lifetime (stability) is defined by������������ � ������������

, where
���

denotes the scale where the feature
appears and

���
where it disappears. (For discrete signals some com-

pensation is required [15].) Once we have a numerical measure for
segment stability, we can seek for a single scale which maximizes
the mean stability (maximum stability line in figure 1(c), local max-
imum when starting from coarsest scale). However, once we have
done a multiscale analysis we do not have to restrict ourselves to fea-
tures that appear in a single scale. Witkin proposes to descend the
tree from the top to the bottom, as long as the mean lifetime of the
offsprings is larger than the lifetime of any of the parents. The latter
criterion gives signal descriptions that correspond very well to the
human perception of the time series. The stable features according to
this criterion are indicated by double signs in the figure (“

���
” and

“ ��� ”). From the interal tree of scale we can see, for instance, that
the the peak before the second major hill is perceptually more impor-
tant than any of the noisy peaks before (tall rectangle near  "!$#&%(' ).

Thus, we use the interval tree of scales to convert a numerical time
series into a stable symbolic description consisting of labeled inter-
vals. The labels adress increasing/decreasing behaviour if the first



derivative is used, or concave/convex behaviour in case of the sec-
ond derivative, or both. The description is stable in the sense that
small changes in the scale parameter or noise level do not change
the symbolic description. No thresholds were necessary. The time
consuming kernel smoothing may be replaced by efficient wavelet
analysis [4], as we will discuss in section 4.

3 INDUCTION OF QUALITATIVE RULES

Most of the popular rule induction algorithms in machine learning
(like C4.5, AQ11, etc.) are static, that is, they assume that the vari-
ables do not change over time. If consecutive measurements are em-
bedded in a vector, these algorithms can be used to learn rules that
reflect temporal dependencies [11, 13]. A certain attribute used in
an induced rule may then address the value of a variable 5 minutes
ago, for instance. However, temporal processes are often subject to
dilatation in time, that is, in similar situations a discriminating peak
may occur a bit earlier or later than in the past. If we simply check
for a value at a specific point in time, there is no way to cope with
such effects. Furthermore, values measured at a single point in time
are more sensitive to noise compared to stable, local trend informa-
tion (signal plus Gaussian noise can easily exceed some threshold
found by a rule inducer, however, it is less likely that Gaussian noise
turns an increasing segment (of considerable length) into a decreas-
ing one.)

Here, we consider labeled interval sequences as a natural gener-
alization of static attributes to time-varying domains: whenever the
attribute changes, a new interval with the appropriate label is intro-
duced. We assume that such a sequence is given or is derived as ex-
plained in section 2. There is not much literature about the analysis
of such interval sequences, only recently some work has been done
[12, 20, 7]. Not surprisingly, since we have a typical knowledge dis-
covery application all these papers are motivated by the discovery of
association rules [1, 17]. Among these, [7] deals explicitly with self-
similarity in long sequences (observation of one system for a long
time), while the others approaches compare many different short se-
quences (observation of many systems for a short time). There are
also differences in the expressiveness of the used temporal patterns.
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Figure 4. Temporal patterns in labelled interval sequences.

Following [7], a temporal pattern is considered as a set of labels,
together with a matrix of interval relationships. Figure 4 gives an ex-
ample of an interval sequence and the patterns “

�
before � ” and “

�
before � and the gap is covered by � ”. To be considered interest-
ing, such a pattern has to have a limited temporal extension, that is,
it must be observable in a sliding window of a certain width. The un-
derlying assumption is that events have to be neighboured in time in
order to affect each other. As the window is sliding along the interval
sequence, we denote the set of window positions in which a pattern �

was observed by ����� 	 . We integrate over the characteristic func-
tion 
�� to obtain its support supp

� � � ( 
�� �  � !���  ���� , 0 oth-
erwise, supp

� � � !�����
�� �  ���  ). Figure 5 shows an example pattern
(left) and the part of an interval sequence that can be seen through
the sliding window at a fixed position. Is the pattern on the left ob-
servable in the window? At first glance, it seems so, because the first
three intervals are contained and overlap each other, and the fourth
interval has just entered the window. On second thought, however,
since we are not yet sure about the relative position of the endpoints
of the last two black intervals in the window, the pattern on the left
cannot be observed yet: we may have “ � overlaps � ” or “ � contains
� ” for the last two intervals! As soon as � or � ends we can decide
the true relationship and observe the pattern. For further details, see
[7, 9].

A

B

C

pattern of interest

Figure 5. Notion of support.

We say that a pattern � is a subpattern of � ( ����� ) if � can be
obtained from � by removing intervals. Obviously, we have

����� � supp
� � �"! supp

� � � (1)

For any �#�$� we can write down a temporal rule, for instance,
from � ! “

�
overlaps � ” and � ! “

�
before � ,

�
overlaps � , �

overlaps � ” we obtain a rule: Whenever
�

overlaps � , there will be
a � after

�
, which is overlapped by � with probability % . The confi-

dence % of this rule is given by conf
� � &'� � ! supp

� � �)( supp
� � � .

Confidence alone is not a good indicator for valuable rules, for in-
stance, if � and � occur only once, we obtain a confidence of 1, but
of course we would never induce a rule from a single observation.
Therefore, we are only interested in those rules that can be observed
in at least suppmin percent of the sliding window positions. Such pat-
terns are called frequent patterns. For rule induction, we are only
interested in rules with supp

� � �"* suppmin.
Condition (1) is the fundamental requirement to enumerate the

space of temporal patterns incrementally in the fashion of associa-
tion rule mining [1]: Starting from the 1-patterns, consisting only of
a single interval, we remove those patterns � that do not reach the
minimum support suppmin. From (1) we know that, for any + -pattern
to be frequent, every subpattern has to be frequent, especially all +
subpatterns of size + �, . Thus, a set of candidate 2-patterns is build
from the frequent 1-patterns, for which the support values are esti-
mated in another scan of the sequence. This procedure is repeated
until no more candidates are created (see [1] for details).

When estimating the support of the candidate patterns, we have to
check for each candidate and each sliding window position, whether
the candidate is currently observable or not. The space of temporal
patterns increases faster than -/. with the number + of intervals in the
pattern, therefore efficient pruning techniques are necessary to keep
the number of candidates as small as possible. Making use of the
fact that the content of the sliding window changes slowly, the num-
ber of these tests can be reduced reasonably [7, 9]. (By the way, the
high complexity usually found when using the Allen algebra refers
to constraint satisfaction problems, where a (partially filled) matrix
of temporal relationships is given and a set of intervals that respects
these relationships has to be found. Here, we have the reverse situa-
tion and start with the intervals.)



For interesting rules, thresholds on minimum support and mini-
mum confidence have to be fulfilled before a rule is induced. Still,
one usually obtains a large number of frequent patterns and thus a
large number of rules. While originally the confidence value was sug-
gested to rank interesting rules in association rule mining, it has been
observed by many authors that confidence is not very well suited for
this task. Instead, we use the J-measure [22] to rank rules � &'� by
their information content ( � � � ��� � �

is the probability of observ-
ing � in an arbitrary sliding window

�
):

� � � &'� � ! � � � ��� � ������� � &'� � with
��� � &'� � ! � � � ��� ��� ��� � ������ � � �

� ��� ��� ��� � �
� � � ��� � �

� � � � �
	� ��� ��� � ������ � � �
� ��	� ��� ��� � �
� � � ��	� � �

The j-term is the Kullback-Leibler distance (or relative entropy) of
the a priori distribution of the rule pattern � and the a posteriori
distribution of � given that � has been observed. When applying the
rule multiple times, on average we have the information

� �� � � !� � ! � � � � ! � �������� � � ! � � . The value of J is bounded by����� '�� bit. Using this measure, much better results in rule ranking
have been reported in [8].

At the end of the discovery process, we have obtained a set of
rules, ranked by their information content. These rules use qualitative
attributes of the original time series and their temporal relationships.
They provide hints for potential dependencies between different time
series (if the symbols in a rule stem from different time series).

4 QUANTITATIVE CONSTRAINTS

Once we have found some potentially interesting qualitative rules, we
may want to further specialize the rules in order to obtain a higher
confidence value or information content. This can be done in two
ways, either we can refine the labels for say increasing segments
into linearly increasing, exponentially increasing, logarithmically in-
creasing, etc. From an algorithmic point of view, this does not add
any further difficulties to the approach, we can restart the rule in-
duction process after having generated the new intervals. Or we can
attribute the labels with numerical values (like slope in case of linear
segments). Then, by requiring that the slope of a linearly increasing
segment has to be larger or smaller than a certain threshold, the rule
may become more discriminating and informative.

Before we consider the problem of rule refinement, let us first con-
sider the problem of estimating the quantitative attributes. As we
have discussed in section 2.1, we select the interval representation
at different scales, that is, different amount of smoothing has been
applied. Any extracted feature will depend on the degree of smooth-
ing, since it determines the degree of dislocation and blurring that has
occurred. If we do not compensate these effects, it will be difficult or
even impossible to detect the correct quantitative dependencies.

In [4] a solution to this problem has been proposed. There, the iter-
ative smoothing is replaced by more efficient wavelet analysis. Hav-
ing selected a qualitative signal representation in section 2, we are
now interested in signal reconstruction such that the synthesized sig-
nal is conform to the qualitative description. The (wavelet) interval
tree of scales tessellates the time/scale plane, and can also be seen as
a tessellation of the wavelet coefficients. By using only those wavelet
coefficients for the reconstruction that correspond to the stable fea-
tures in our selected representation, only the undesired unstable fea-
tures are removed from the original signal. It is this reconstruction
where we extract slope information from.

Now that we have attributed intervals, we may select a rule and
see if additional constraints like “length

� � �����
” or “slope

� � � *� ” increase the information content of a rule. This can be done in
a similar way as rule inducers like C4.5 do this (see e.g. [19]), we
just have to replace “the number of training instances” that satisfy
a constraint by the “support of the temporal pattern”. For a specific
rule, we have to collect all instances of the premise and rule pattern
and sort these instances by the value of the attribute that is used for
specialization. In figure 6 we have four instances (for

� !������� #�� - ),
collected in decreasing order from top to bottom. The first line shows
the support of the premise pattern with

� ! - . Together with the
support of the rule pattern (which is not shown in the figure), the J-
value for

� * ' � ' can be calculated2 (which is in this case, since we
have no instances with

��* - , the same as the J-value of
� ! - ). The

next value is 4, to calculate the J-value of a rule with condition
��*

� � ' we unite the support sets we have so far with the support set of all
pattern instances with

� ! # (line
� ! # in figure 6). Again, the J-

value is calculated and compared with the J-value we obtained before
for
��* ' � ' . Thus, while we sweep once through the possible values

of the selected attribute, we incrementally increase the support of the
temporal patterns, and for each value we then calculate the J-value of
the specialized rule and select the specialization that maximizes the
J-value in a greedy fashion. More details can be found in [8].

= 1α
α = 3

= 4α
α = 7

attribute value support intervals

Figure 6. Specializing rules.

The specializations found may then be used to restart the rule dis-
covery process. For instance, if the slope of increasing segments in
signal

�
was of importance for the examined rule, additional inter-

vals “slope
� � � * � ” could be extracted and added to the input se-

quence of labeled intervals. Since the threshold � has proven to be
helpful, it is not unlikely that new rules will be discovered which
also share the same or a similar constraint. This incremental induc-
tion of new intervals/labels can be used if no background knowledge
about thresholds is available, or if one puts the existing thresholds in
question.

5 APPLICATION

We have applied the sketched method to the analysis of air pressure
and wind strength data that has been measured hourly over approx-
imately 7.5 years. This application has been selected because (a) it
is well known that local differences in air pressure are the cause for
wind, therefore the method should be able to find some relationships
between these two variables and (b) such data is readily available.
Of course, since weather phenomena have been examined for a very
long time, we do not expect to discover new knowledge in this area,
but want to show that the discovered knowledge is valid and easily
interpretable.

Intervals have been extracted from the scale of maximum mean
stability when sweeping from the finest to the coarsest scale (the
�

5.5 is the midpoint between � �"! and � �$#



first local maximum has been chosen). We have only generated those
rules that make predictions into the future. For the following ex-
amples, in the pictorial rule presentation we use a prefix w/p for
windstrength/airpressure, respectively, and a suffix inc/dec for in-
creasing/decreasing segments. Intervals that belong to the premise
are drawn with thin lines, those that belong to the conclusion with
thicker lines.

At the end of the rule induction, the top-ranking rules are dom-
inated by rules that refer to a single variable only. This is due to
the way in which we have generated the interval sequences, the de-
terministic alternation between increasing and decreasing segments
is reflected by these rules. We select all rules that refer to air pres-
sure in the premise and (at least partially) to the wind strength in the
conclusion. For the interpretation of the rules we have to consider
the temporal relationships carefully. For instance, we may find a rule
p-inc p-cvx & w-inc as well as a rule p-inc p-cvx &
w-dec. In its static interpretation it seems that the sequence p-inc
p-cvx is not very well suited to distinguish an increase from an de-
crease in wind strength. However, from the temporal relationships
we will see that the p-cvx segment overlaps the w-inc interval in
the conclusion, whereas the w-dec segment follows always after the
p-cvx segment:

p-inc
p-cvx

w-inc w-dec
Given the temporal relationships, the first rule appears more valuable,
since the interval in the conclusion is closely connected to those in
the premise (via an overlaps rather than a before relationship).

The w-inc variant of the rule has an initial information content of��� � � bit, which can be increased to ��� �% bit by requiring a curvature3

� � � � �� and a length of 19 to 46 hours for the convex segment.
Therefore, the corresponding air pressure curve has a peak (p-inc
will be followed by p-dec), which is restricted to not being too flat
(condition on the curvature). On the average, in the following w-inc
segment the wind strength will increase by % � '��  m/s every hour.
We can also find dual rules where inc/dec/cvx is replaced by
dec/inc/ccv, resp.

Similar situations can be expressed by using p-inc and p-dec
labels alone. For instance, a rule

p-dec p-inc
w-xxx

can be found with w-inc but also with w-dec for w-xxx. How-
ever, specialization yielded that a segment of increasing windstrength
is overlapped by a peak in the air pressure curve if the slope of the
p-inc segment is greater than  � � - . This is an alternative constraint
to avoid flat peaks. The condition on the slope of the segment corre-
sponds pretty well to the thresholds of  � � mentioned in [23].

The whole process of interval extraction, rule generation and re-
finement took a few minutes on an AMD Athlon 1200 MHz com-
puter. Figure 7 shows the number of frequent patterns (

� �
.
�
) and can-

didate patterns (
� � .
�
) for each value of + , together with the runtimes

for support estimation (  ��� ) and candidate generation (  
	�� ). Only 8
labels were used for the 3 variables and the time series have been con-
verted into approximately 10000 intervals. The window width was 72
hours and minimum support was 1%. The frequent pattern enumer-
ation is linear in the sequence length, whereas the specialization is
in the worst case quadratic in the number of pattern instances. This
increased complexity is, however, not a major drawback, because
specialization is carried out for much fewer rules than the frequent

�
Here, we refer to mean of the second derivative.

pattern discovery process.

+ � �
.
� � �

.
�
/
� � .
� � � .

�  ���  	��
1 8 100% 8 0.29 0
2 210 56.5% 372 1.34 0.01
3 3127 74.2% 4213 6.58 0.83
4 9561 86.8% 11010 12.97 6.79
5 5343 99.3% 5378 11.64 3.61
6 792 100% 792 4.21 0.52
7 29 100% 29 0.87 0.03
8 0 0% 0 0.43 0

19070 87.4% 2.1% 50.12

Figure 7. Frequent pattern enumeration for weather data.

6 CONCLUSIONS

We have discussed an inductive approach to learn dependencies be-
tween multiple time series in a fashion that is close to the way a hu-
man would perform this task. When describing phenomena in time
series, humans use a syntax that is similar to our notion of temporal
patterns. Therefore the proposed methodology may support a human
in learning from temporal data. It requires only very few parameters
(in the pattern discovery stage: min. support, min. confidence and
window width), whose exact settings seem not to be critical.

There is room for a number of straightforward improvements, for
instance, the rules may be examined with respect to optimal interval
relationships. Arbitrary relations like “

�
and � do not intersect” can

be composed out of the simple relationships in Allen’s interval logic
(here:

�
before � or

�
after � ). Since the support for the basic

relationships has already been calculated, an optimal combination
can be found in a similar way as discussed for quantitative refinement
in section 4.
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