
A Subspace Filter Supporting the Discovery of Small
Clusters in Very Noisy Datasets

Frank Höppner
Ostfalia University of Applied Sciences

Dept. Computer Science
Wolfenbüttel, Germany

f.hoeppner@ostfalia.de

ABSTRACT
Feature selection becomes crucial when exploring high-di-
mensional datasets via clustering, because it is unlikely that
the data groups jointly in all dimensions but clustering al-
gorithms treat all attributes equally. A new subspace filter
approach is presented that is capable of coping with the dif-
ficult situation of finding small clusters embedded in a very
noisy environment (more noise than clustering data), which
is not mislead by dense, high-dimensional spots caused by
density fluctuations of single attributes. Experimental eval-
uation on artificial and real datasets demonstrate good per-
formance and high efficiency.

Keywords
feature selection, subspace filter, subspace clustering, cluster
analysis

1. INTRODUCTION
Having learned over the past years that (business) data may
contain extremely valuable information, people seem to col-
lect yet more data, even if no clear connection to a spe-
cific analysis goal is given. Cluster analysis may then give
valuable insights by summarising this data and pointing out
groups of similar data objects. However, in this situation
we would not expect large and well-separated clusters to
suggest themselves. Instead, especially when the data was
collected without a specific purpose, many attributes will
appear potentially irrelevant and clusters may just appear
as somewhat more dense areas than the surroundings.

The identification of clusters in such data requires to firstly
determine the attributes relevant to the cluster. Standard
clustering algorithms assume that all provided attributes are
equally important, so either an attribute selection has to
take place during preprocessing or the attribute selection
has to be incorporated into the clustering algorithm itself
(subspace clustering).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’14 June 30 - July 02 2014, Aalborg, Denmark
Copyright 2014 ACM 978-1-4503-2722-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2618243.2618260

There are many clustering paradigms, such as hierarchical
clustering (e.g. single-linkage clustering), partitional clus-
tering (e.g. k-means, Gaussian mixture decomposition), grid-
based (e.g. CLIQUE), density-based clustering (e.g. DB-
SCAN, OPTICS). All these algorithms have been applied to
various applications and have proven their usefulness. As
new clustering algorithms are continuously proposed there
seems to be no evidence of convergence to one or a few gen-
eral purpose clustering algorithms. Clustering is often also
a means to an end rather than the end itself, which is why
it is difficult to converge to a single definition of a good clus-
ter let alone a single best clustering algorithm. Therefore
we assume that the selection of the best-suited method is
application- and/or goal-driven and there is no such thing
as the single best clustering algorithm. Therefore we are
interested in selecting promising subspaces independently of
the applied clustering method, that is, we focus on subspace
selection rather than subspace clustering.

Typical approaches to feature selection (mainly used for clas-
sification task) can be divided into wrapper and filter ap-
proaches. A wrapper approach selects subspaces randomly
or according to some heuristics, runs the selected clustering
algorithm for each subspace, evaluates the results and picks
the best. Given that the number of subspaces grows expo-
nentially with the dimensionality of the dataset and that the
clustering algorithm may have a high complexity itself, this
path becomes computationally unfeasible in most cases. Al-
though the effort may be reduced by interlocking subspace
search and clustering, it would again be limited to a specific
clustering algorithm. A filter approach, on the other hand,
ranks individual attributes (or subspaces), which is poten-
tially useful for any kind of clustering algorithm. In this pa-
per, we follow the filter approach, in particular we propose
a new filter for subspaces (rather than single attributes).

Assumptions. We assume a dataset D where n objects of
interest (rows) are characterised by d dimensions or attributes
(columns) and denote the set of all attributes byA = {Ai | 1 ≤
i ≤ d}. By dom(A), A ∈ A, we refer to the domain of at-
tribute A. We assume a user is interested in finding clusters
in this dataset, which are not necessarily defined over all
attributes. Our intention is to suggest and rank subspaces
worth further inspection and clustering. The proposed ap-
proach has been developed with the following restriction and
two assumptions:

• We restrict our proposal to data that is truly numer-
ical, that is, dom(A) ⊆ R and rather than only a few
“numerical codes” we assume data with many different
values.

• We assume that the user does not know if there are
any clusters at all. In case there are, the user does
not want to miss clusters, but wants to understand
dependencies in the lowest possible dimensionality.

• We assume that the data is not naturally divided into
well-separated clusters, but there might be more noise
than grouping data. We expect clusters to distinguish
from their neighbourhood by a somewhat higher data
density rather than a void space.

Contributions. The major contributions of the proposed
subspace filter are:

• New simple but effective approach to the identification
of subspaces that have some clustering tendency.

• A new efficient algorithm that identifies interesting
subspaces (not only, but also) under the above-mentioned
assumptions (small clusters, not well-separated, much
noise).

• Compared to competing approaches, the threshold se-
lection is better justified and does not consist of em-
pirical rules of thumb only.

• Extensive evaluation.

The outline of the paper is as follows. In the next section
we review earlier work on filter approaches to feature se-
lection for clustering and discuss the impact of the above-
mentioned assumptions on the problem. We then propose
a new algorithm for subspace filtering in Sect. 3, which is
experimentally evaluated on artificial and real data in Sect.
4. We conclude the paper in Sect. 5.

2. DISCUSSION OF RELATED WORK
2.1 Related Work
There are numerous approaches to clustering in general and
subspace clustering in particular. The focus of the paper
will be on subspace selection, therefore we refer the reader
to [11, 19, 22] for reviews on subspace clustering. While
feature selection for classification tasks received much atten-
tion, only few publications on feature selection for clustering
tasks are available. The comprehensive review of [14] lists 45
feature selection approaches for classification tasks, but only
7 for clustering (50% of them being wrapper approaches).

The wrapper approaches evaluate the validity of the ob-
tained clusters (e.g., compactness and separation) to de-
cide which subspace partitions best. Wrappers (e.g. [6, 12])
are typically used for prototype-based clustering algorithms
(like k-means, Gaussian mixture decomposition), where the
number of clusters is traditionally determined by similar va-
lidity measures. Filter approaches also employ measures of
quality or interestingness to judge the importance of an at-
tribute (or a subspace) for clustering. The better the clusters

are separated and pronounced, the more the density deviates
from a uniform distribution. Thus the amount of disorder
introduced by a feature can be used for ranking (e.g. [3, 5]).
In [3] a grid-based approach is used to estimate the data
density per grid cell and then calculate the entropy of the
data distribution over grid cells. The entropy-based quality
measure to evaluate the interestingness of a subspace is

QENTROPY(S) =

(∑
A∈S

H(A)

)
−H(S)

where H(A) is the entropy of a single variable and H(S) of
the full subspace (calculated on the grid-cells). In [5] the
(parameter-sensitive) definition of a grid is avoided but dis-
tances are used to achieve similar results. It was observed in
[4] that the histogram of all pairwise distances varies consid-
erably between datasets that do not have cluster substruc-
ture and those that do have. A (parameterized) measure is
proposed that exploits the shape of the histogram for feature
ranking.

Two filter approaches that rank subspaces rather than at-
tributes are RIS [8] and SURFING [2]. Let

NS
ε (x) = {y ∈ D | dS(x, y) ≤ ε} (1)

be the ε-neighbourhood of x ∈ D where the superscript S ⊆
A of the distance function d denotes the considered subspace
in which the distance is calculated. With RIS the quality of
a subspace is defined locally at point x by

QRIS(S, x) =
|NS

ε (x)|
expected-count in NS

ε (x)

where the denominator denotes the number of data objects
expected to fall into a sphere in S with radius ε in case
of a uniform distribution. With SURFING the radius ε is
adjusted for each x ∈ D such that |NS

ε (x)| = k remains
constant. Somewhat similar to [4], SURFING examines the
variation in the distance to the kth nearest neighbour ε (here
denoted by dSkNN (x)). The interestingness measure is de-
fined as

QSURFING(S) =
0.5
∑

x∈D |µS − dSkNN (x)|
µs|BelowS |

where µS is the average dSkNN -distance of all data objects
and BelowS is the number of objects falling below µS . (In
case BelowS = ∅, the quality is defined to be 0.)

The main advantage of SURFING over RIS is that the qual-
ity measure adapts to the mean dSkNN -distance automati-
cally (cf. denominator). On the other hand, only RIS pro-
vides a (heuristic) compensation for border effects: as the
subspace dimensionality increases, more and more data points
lie close to the boundary of the data (curse of dimensional-
ity).

Most approaches explore subspaces in a level-wise manner
(all subspaces of dimensionality n are examined before sub-
spaces of dimensionality n+ 1 are considered). To be inter-
esting, the respective quality measure has to exceed some
threshold τ . Two important aspects have to be considered
then: Suppose S is an interesting n-dimensional subspace
with dimensions AS . (1) A subspace S′ of S may appear
interesting simply because it shares its dimensions with S.

Ideally, only the original subspace S gets a good quality as-
signed, but not its subspace S′. Many approaches thus take
care that their quality measure Q yields Q(S) > Q(S′) in
this case. (2) A superspace S′ of S, which is an extension of
S with an irrelevant attribute A, may still exceed the quality
threshold – not because A contributed to the interestingness
of S′, but because the density of S was so extraordinary high
that it still looks dense after adding a random attribute. A
heuristic decision procedure is proposed with RIS to iden-
tify such cases. SURFING requires an upward trend in the
quality measure for interesting subspaces.

Most of the approaches mentioned above share the property
that they evaluate attributes globally over the full dataset.
It is, however, well possible that an attribute is useful for one
cluster and useless for another; so the utility of an attribute
should be evaluated locally, which is called localised feature
selection in [12]. They propose a wrapper approach where
the search for the best subspace is performed for each cluster
separately. While the quality assessment is done per data
object by RIS (and thus clearly local in the sense of [12]),
this is not the case with SURFING (or the entropy-based
measure) which evaluate the subspace as a whole.

Although we are interested in subspace filtering rather than
subspace clustering, such algorithms face similar problems
as they need to explore all subspaces, too. Among the ap-
proaches in the literature, the SCHISM [21] comes closest to
our own proposal wrt. how interestingness is measured. The
grid-based approach assumes independent attributes and de-
rives a bound for the number of hits per grid cell from the
Chernoff-Hoeffding bounds of a binomial distribution. (We
will comment on SCHISM more detailed later in the paper.)
Hypothesis testing is also used in [15] to identify single clus-
ters but not to rank subspaces.

Also somewhat related is the work on outlier detection in [9].
The authors seek for subspaces that exhibit outliers, that
is, data objects with a low density compared to their local
neighbourhood. With clustering tasks we are interested in
data objects of high density. The used notions of interest-
ingness are thus somewhat similar, but the goals and result-
ing algorithmic approaches differ considerably (and outliers
tend to stand out, whereas small clusters are embedded in
the noise).

2.2 Discussion
In this section we briefly discuss the problems we face with
existing approaches in the light of the assumptions men-
tioned in the introduction.

Interestingness. What makes a subspace interesting for
clustering? Consider the two datasets in Figure 1: which
subspaces are interesting? In the 2D case with attributes
X and Y one can think of only three subspaces: {X}, {Y }
and {X,Y }. When applied to any of the two datasets, most
feature selection algorithms (including RIS and SURFING)
would find the full space {X,Y } interesting and conjecture
clusters in the full space.

However, we argue that only the example on the right of Fig.
1 is interesting. Despite of the similarity of both datasets,

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

−2 −1 0 1 2 3 4

−
1

0
1

2
3

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●● ●

● ●● ●●●●
●

●● ●●
● ●●

●

●● ●●

●

●

●●
●

●●●

●●
●

●

●

−2 −1 0 1 2 3 4

−
1

0
1

2
3

Figure 1: Two 2D-datasets. Which subspaces are
interesting?

we consider the dataset depicted on the left as uninterest-
ing and justify this by the process that generated the data:
Both datasets differ only by 40 points which were added to
the right example. The remaining 1000 points were gener-
ated from two independent variables with bimodal distribu-
tions. The density peaks in the univariate distributions are
responsible for the 2D-peaks, so we can understand Figure
1(left) from the marginal distributions alone – a 2D-view on
the data does not contribute anything new. On the right,
the additional 40 data points deviate from what we expect
by observing the marginal distributions, the additional peak
at (−1, 1) can only be explained in the full space {X,Y },
which makes this subspace worth clustering in 2D and thus
interesting.

To carry this example to the extreme, suppose we have d
attributes, all with a bimodal distribution without any in-
teraction between any of the attributes. Nevertheless, in
the d-dimensional space we will observe 2d different spots
of increased density (combination of the two modes for each
dimension). Inspecting the d-dimensional space rather than
the univariate attributes would certainly be poor advice.
Similar arguments have been made by [6, 9, 10]. Neither
RIS [8] nor SURFING [2] or [4] have countermeasures for
this case. While [3] emphasises that the attributes of an in-
teresting subspace should correlate and propose to use some
threshold on their entropy measure to detect it, it does not
work for Fig. 1: Some fluctuation is always present, so any
correlation measure may provide (insignificant) evidence for
minor correlation. The entropy measure operates globally,
that is, the few additional points will not really change the
(global) correlation between X and Y for the two cases of
Fig. 1. There may exist a threshold that is actually only
exceeded for the right dataset in Fig. 1, but there is no con-
structive way to find it beforehand.

Density estimation. Any clustering algorithm uses some
kind of density estimation. With k-means a good cluster
has a small average distance to its cluster members (min-
imisation of within-cluster variance), grid-based approaches
search for highly populated grid cells, density-based approaches
often perform density estimation using the neighbourhood
Nε(x) for each data point x. The grid- and density-based
approaches require some grid resolution or neighbourhood
radius ε to be fixed a priori (cf. equation (1)).

It has been observed that a global density threshold, as used
by early subspace clustering algorithms, leads to a bias to-
wards a certain dimensionality [11]. As dimensionality in-
creases, so does the distance between data objects and a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y
Figure 2: Finding clusters in the raw data (left), con-
sisting of uniform noise plus small clusters (right).
A neighbourhood size capable of detecting the blue
cluster may fail in detecting the red cluster.

fixed neighbourhood size may become too small to robustly
estimate the data density [1]. But as we expect clusters that
are neither well-separated nor have a pronounced increase in
data-density, we are concerned about the neighbourhood size
for another reason. Consider the dataset in Fig. 2(left). It is
difficult to spot clusters without having a look at the right
figure: the data consists of uniformly distributed noise (gray,
1000 points) with a cluster of size 70 (red) and 20 (blue).
The data density in the area of the red (resp. blue) points is
roughly two (resp. three) times higher than expected from
the background noise. A density estimate in a square area
of 0.12 may be well-suited to detect the blue cluster, how-
ever, it may be too small to robustly detect the red area due
to random fluctuation in such a small area. One can easily
spot areas in the noise where a recognisable increase in the
local density (to a similar density as in the red area) can
be observed. To robustly detect the increase in density near
the red points, the sampling area should be increased.

Blunt Weapons. Finally, when (comparatively small) clus-
ters are embedded in (lots of) noisy data, some techniques
used by the discussed approaches will not work any longer.
Subsampling, used by RIS for instance, is likely to miss the
few relevant data points that assemble the cluster. Secondly,
grid-based approaches try to reduce the computational effort
by discretizing the numerical variables, but a small clus-
ter may become undetectable if the few points that raise
the data density above the level of the background noise
are distributed among multiple grid cells. Thirdly, lavish
thresholds (e.g. a large minimum support with frequent
itemset mining) may help us to prune many subspaces early
and thus reduce run-time, but when clusters exhibit only a
moderately increased density, we can’t employ too generous
thresholds without missing interesting subspaces.

3. APPROACH TO SUBSPACE FILTERING
Our guideline for suggesting subspaces that have a clustering
tendency is the following:

Definition 1. A subspace S ⊆ A is considered interesting,
if it discloses some objects for which their local density in S is
more unlikely to observe than for any other subspace (given
the density fluctuations of single attributes).

In line with this notion of interestingness, we propose a sub-
space filter approach that ranks subspaces according to their
interestingness called ROSMULD (ranking of subspaces with
most unlikely local density). On an abstract level, the pro-
posed subspace filtering algorithm (Alg. 1) consists of the
following steps:

1. Based on a range of dimensions where clusters are sus-
pected, and a factor denoting the density increase the
user does not want to miss, the neighbourhood size for
density estimation is defined. (Sect. 3.4)

2. The attributes are transformed to rank-order and in-
stead of an Lp-norm neighbourhood Nε(x) in the orig-
inal attributes we consider the maximum norm on the
ranks. Attributes from an arbitrary distribution are
thereby transformed to a uniform distribution. (Sect.
3.1)

3. If individual attributes A, B follow a uniform distri-
bution, so will subspaces A × B as long as A and B
are uncorrelated. Under the assumption of a uniform
multivariate distribution (which is now guaranteed for
uncorrelated attributes), for every data point we iden-
tify the subspace with the density so high, that it is
most unlikely to occur by chance. (Sect. 3.2)

4. Subspaces are ranked by how often they have been
flagged as surprisingly dense in the previous step.

Each of these steps will be discussed in the subsequent sec-
tions.

Algorithm 1 ROSMULD(D, f, α, β)

Require: dataset D with attributes A ∈ A, type I/II error
rates α, β, density factor f

Ensure: returns most surprising subspaces of D
determine e from f, α, β acc. to Sect. 3.4
transform all attributes to rank-order
for x ∈ D do

determine pA for x (eq. (2))
bestS = ∅ . global var: best subspace for x
bestsofar = α . global var: best quality score so far
findMostSurprising(x, ∅,A)
increment vote-counter for bestS (only if bestS 6= ∅)

end for
drop subspaces that received only a few votes (e.g. 5)
return interesting subspaces (ordered by votes)

3.1 Rank-Ordered Neighbourhood
Instead of analysing the original data, we perform a rank-
order transformation first. A rank-order transformation is
easily accomplished by ordering the values of an attribute
and replacing the original measurements by their rank. Ana-
lysing rank-order instead of original data has a long tradi-
tion in statistics and is known to be more robust to outliers.
The main reason for utilising it here is, however, that it
naturally transforms univariate data from an arbitrary to
a uniform distribution. According to the first assumption
(cf. introduction), we expect identical values to occur only
occasionally and use ordinal ranking (that is, all items re-
ceive ordinal numbers, ties are broken arbitrarily). For the

remainder of this paper, we assume that the original feature
vectors x ∈ D ⊆ Rd have been transformed to a rank-order
feature vector x ∈ DR ⊆ [1, n]d ⊆ Nd.

We define the neighbourhood of some x in a subspace S
of the rank-ordered dataset DR using the maximum norm
(L∞):

NS
e (x) = {y ∈ DR | ∀A ∈ S : |yA − xA| ≤ e}

That is, the neighbourhood consists of data objects whose
difference in the rank in any attribute is at most e. Here,
e ∈ N takes the role of ε used in NS

ε (x). The effect is
illustrated in Fig. 3 for the interesting dataset of the intro-
ductory example of Fig. 1(right). On the left, the original

(interesting) dataset is shown again, where N
{X}
e and N

{Y }
e

are marked. In the rank-ordered version on the right, this
area becomes uniformly distributed. But the relevant dense
spot (difficult to distinguish from irrelevant dense spots in
Fig. 1(right)) remains dense (marked by a box in Figure
3(right)), because this is a true 2D-cluster and not just a
side-effect of co-occurring high densities in univariate distri-
butions.

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●● ●

● ●● ●●●●
●

●● ●●
● ●●

●

●● ●●

●

●

●●
●

●●●

●●
●

●

●

−2 −1 0 1 2 3 4

−
1

0
1

2
3

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

● ●● ●●● ●
●

●●
●

●

●
●●

●

●
● ●

●

●

●

● ●
●

●
●

●

●●

●

●

●

0 200 400 600 800 1000

0
20

0
60

0
10

00

Figure 3: Effect of rank-order transformation on
dataset in Fig. 1(right). The neighbourhood Nε(x)
for original attributes and Ne(x) rank-ordered at-
tributes is shown for one data point.

Given some e ∈ N and x ∈ DR, there are 2d subspaces S ⊆ A
and to find interesting subspaces we need the number of data
points for each neighbourhood NS

e (x). For a given subspace
S, for y ∈ D to be a neighbour of x it must lie within a
e-range of x, that is, ∀A ∈ S : |xA − yA| ≤ e. The belong-
ingness to NS

e (x) can be expressed by d binary flags, one for
each attribute A: bA = true ⇔ |xA − yA| ≤ e. Conceptu-
ally, we may convert the dataset D into a d-dimensional 0/1-
dataset, where each dichotomous variable bA = 1 indicates
if the respective data object is within e ranks in attribute
A. The neighbour count of x with respect to subspace S
may thus be measured by the number of rows having 1’s in
all columns bA with A ∈ S. This is exactly the problem
of finding the support in itemset mining where the dimen-
sions play the role of items and is used by RIS [8]. Now the
computational benefit of the rank-order transformation be-
comes obvious: In general the effort of frequent pattern min-
ing strongly depends on the largest frequent itemset (here:
largest = highest dimensionality), because all subsets will
also be frequent. Even without any interesting clusters but
mutually independent attributes, a considerable variation
in the density may occur as we have seen in Fig. 1. Thus,
even for independent attributes it may happen that high-
dimensional subspaces contain spots of (relatively) high data
density (but no cluster worth considering). Having applied

a rank-order transformation, we no longer expect such vari-
ations for independent attributes which has a strong impact
on any threshold-based subspace enumeration.

3.2 Interestingness of Subspaces
Thanks to the rank-order transformation we can safely as-
sume uniform distributions along each of the dimensions
that span an arbitrary subspace. The 1D-neighbourhood
of x ∈ DR for any attribute A consists of 2 · e neighbours (e
to the left and to the right, x itself is excluded). The prob-
ability of y ∈ DR\{x} being a neighbour of x in subspace
{A} is thus1

pA(x) := P
(
y ∈ N{A}e (x)

)
=

2e

n− 1
. (2)

Our initial hypothesis is that subspace S is not interest-
ing, that is, all attributes are independent. The rank-order
transformation assures uniform univariate distributions and
the independence assumption yields

pS(x) := P
(
y ∈ NS

e (x)
)

=
∏
A∈S

pA(x) =

(
2e

n− 1

)k

(3)

as the probability of an arbitrary point lying in NS
e (x).

The number of objects falling into the neighbourhood is
thus a random variable and follows a binomial distribution
B(n − 1, pS). Formally, we test H0 : pS(x) =

∏
A∈S pA(x)

against HA : pS(x) >
∏

A∈S pA(x). We use a one-sided test
because clusters are supposed to have an increased data den-
sity. The test statistic is the number of observed elements
in the neighbourhood and we reject H0 if the count exceeds
the (1 − α)-quantile of B(n − 1, pS) (for some significance
level α).

Accounting for border effects. With an increasing dimen-
sionality, more and more data lies at the boundary or bor-
der of the hypercube, therefore it is important to cope with
this effect. Fortunately, this is easily accomplished: If some
x ∈ DR lies close to a border, we won’t be able to find e
neighbours to both sides, but only er to the right and el to
the left. This changes the probability pA for the respective
attribute A to

pA(x) =
el + er
n− 1

. (4)

A change in probability pA(x) takes an immediate effect
on the (1 − α)-quantile, so the interestingness threshold
does vary considerably with the position of x relative to
the bounds of the dataset.

Interestingness measure. In the ROSMULD algorithm,
we want every data point to vote for the subspace exhibit-
ing the most surprising dense neighbourhood. So we use the
p-value of the (one-sided) binomial test, that is, the proba-
bility of observing a neighbourhood count at least as high as
the observed one, as the quality measure. Let f(k;n, p) be
the probability mass function of B(n, p) and F (k;n, p) its

1At this point, we assume x is an inner point, not near the
border or boundary of the dataset. We will deal with border
points shortly.

cumulative distribution function. We define interestingness
of NS

e (x) as

QS
e (x) = 1− F (|NS

e (x)|;n− 1,
∏
A∈S

pA(x)) (5)

Data object x votes for subspace S that minimises QS
e (x).

The more votes a subspace receives, the more interesting
the subspace. In the following we may drop indices and
argument of QS

e (x) if they are clear from the context.

Checking sub- and superspaces. For each x ∈ DR we
seek the most surprising subspace and let the data point
vote for this subspace. How does this approach compare
with other quality measures, in particular with those effects
discussed in Sect. 2.2 for which competing approaches in-
stalled (heuristic) upward- and downward-pruning as coun-
termeasures? Suppose there is a cluster in subspace S ⊂ A
that leads to an unexpected high count k = |NS

e (x)|.

Downward pruning: Any subspace S′ ⊆ S, say S′∪{A} = S,
will also contain (at least) k elements. If the true cluster
subspace is S, we want S′ to receive a worse score. Under
H0 we have pS = pS′ · pA. If the count k remains roughly
constant, its realisation is more unlikely for S because of
the smaller probability pS < pS′ . Thus, we receive a smaller
p-value (higher quality) for S. A data object votes only for
the most surprising subspace, so S′ does not receive a vote
from x.

Upward pruning: Now suppose the opposite case where S′ =
S ∪ {A} extends S by an irrelevant attribute A. We would
like the quality measure to assign S a better score than S′.
A threshold-based technique may still recognise S′ as inter-
esting, not because A contributed to the interestingness of
S′, but because the density of S was so extraordinary high
that it still looks dense after adding a random attribute.
As already mentioned, competing methods usually utilise
heuristic decision procedures to exclude S′ from further con-
sideration, but nothing needs to be done using the p-value
as quality measure.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cdf B(1000,0.01*q)

S
S' with p_A=0.8
S' with p_A=0.6
S' with p_A=0.4
S' with p_A=0.2

Figure 4: When extending interesting subspaces
with an irrelevant attribute, its p-value rises (mak-
ing it less interesting).

Figure 4 illustrates the behaviour of QS(x). The inclusion of
an irrelevant attribute A in S′ changes the probability pS′ of

a random point being included in NS′
e to pS′ = pS · pA and

at the same time lowers the expected count to k · pA. The
figure shows cumulative distribution functions for F (k;n =
1000, p = 0.01 · pA), where four different values of pA are
shown. The right-most (black) line corresponds to subspace
S, the four left-most curves correspond to S′ (with varying
pA). Given we have observed a high count k > n · p in
subspace S, the dashed lines connects F (k) with F (k · pA)
of resp. subspaces S′ (coloured curves). Looking from right
(S) to left (S′), the values F (k ·pA) decrease and thus the p-
value (1−F) increases (dashed lines). Thus, S receives again
the vote from x, there is no need for any further pruning
heuristic.

There is no closed form of F (k;n, p), but this behaviour can
also be observed for the upper bounds of F (k;n, p) obtained
from the Hoeffding inequality

F (k;n, p) ≤ exp(−2(k − np)2/n) (6)

leading us to

logF (k · pA;n, pS′) ≤ −2(k · pA − n · pS′)2/n

= p2A · (−2(k − npS)2/n)

< (−2(k − npS)2/n)︸ ︷︷ ︸
logF (k;n,pS)≤

However, the Hoeffding-bounds are known to not work well
for extreme values of p. Therefore, in contrast to e.g. SCHISM
[21], we are not going to use them to derive any bounds for
pruning.

3.3 Finding the Most Surprising Subspace
As already pointed out, frequent pattern mining might be
used to examine NS

e (x) for all subspaces S ⊆ A. The
rank transformation would prevent us from wasting time
on frequent neighbourhoods caused by variations in univari-
ate densities alone. However, we are only interested in the
single best subspace and enumerating all subspaces seems
pointless. We propose a recursive depth-first search (Alg. 2)
using a bound on the interestingness measure to prune parts
of the search space (Alg. 3).

Algorithm 2 findMostSurprising(x,S,R)

Require: current x ∈ D, subspace S ⊆ A, attributes to ex-
amine R ⊆ A, for simplicity bestsofar (smallest p-value)
and bestS (best subspace) are global variables

1: QV = QS
e (x); let cA = |NS∪{A}

e (x)| for A ∈ R
2: if (QV < bestsofar) then . better subspace?
3: bestsofar=QS

e (x); bestS=S; . store subspace
4: end if
5: if (QV − bestsofar > ∆) then . worth to check?
6: if (safeToPrune(x,S,R)) then . pruning possible?
7: return . prune search branch
8: end if
9: end if

10: for A ∈ A with cA − npS∪{A} > 0 (in decr. order) do
11: R = R\{A}
12: findMostUnlikely(x,S ∪ {A},R) . recursive descend
13: end for

Algorithm 3 safeToPrune(x,S,R)

Require: current x ∈ D, subspace S ⊆ A, attributes to ex-
amine R ⊆ A, for simplicity bestsofar (smallest p-value)
and bestS (best subspace) are global variables

Ensure: true if pruning does not miss a better solution

1: Order cA = |NS∪{A}
e (x)|, A ∈ R, decr.: c1 ≥ ... ≥ c|R|

2: Order pA, A ∈ R, increasingly: p1 ≤ ... ≤ p|R|
3: Let ni be the number of y ∈ NS

e (x) that are additionally

found in exactly i neighbourhoods N
S∪{A}
e (x), A ∈ R

4: p = pS ; prune=false

5: for i=1..|R| do
6: p = p · pi
7: if (1−F (min{ci,

∑|R|
j=1 nj};n−1, p) < bestsofar then

8: prune=false

9: end if
10: end for
11: return prune

During the recursive depth-first search, suppose we arrive
at some S ⊆ A (for some x ∈ D) and determined k =
|NS

e (x)|. Then, F (k;n, p) is compared with the currently
best subspace to see if a more interesting subspace has been
found. To decide if a further descend (to higher-dimensional
subspaces) is worth the effort, we need a lower bound of
all p-values achievable in any subspaces reachable from the
current subspace.

Lemma 1. Given a dataset DR with d attributes A ∈ A,
an x ∈ DR, a subspace S ⊆ A and R = A\S, |R| = r. Let

ci = |NS∪{Ai}
e (x)| be the neighbourhood count in subspace

S ∪ {Ai}, Ai ∈ R, ordered decreasingly c1 ≥ c2 ≥ . . . ≥ cr.
Let pi = pAi(x), Ai ∈ R, ordered increasingly p1 ≤ p2 ≤
. . . ≤ pr. Let ni be the number of y ∈ NS

e (x) that are

additionally found in exactly i neighbourhoods N
S∪{A}
e (x),

A ∈ R. Then for any S′ ⊆ A with S ⊂ S′ its quality is
bounded by

QS′
≥ 1− max

m=1..r
F (min{cm,

r∑
i=m

ni};n− 1,

m∏
j=1

pj) (7)

Proof. To find a lower bound of the p-value QS = 1 −
F (k; ...) we seek an upper bound of F (k; ...). For fixed p
the cumulative distribution function F (k;n−1, p) is strictly
increasing in k. An upper bound is thus obtained from
F (k∗;n−1, p) where k∗ is an upper bound of the achievable
count in any subspace S. We find such a bound individ-
ually for all subspace dimensionalities |S| + m, m = 1..r,
and get the overall upper bound by taking their maximum
(max-term in (7)).

So let S′ ⊆ A with S ⊂ S′ with |S′| = |S| + m, m ∈
{1, . . . , r}. For a subspace S′ of dimensionality |S|+m and

an upper bound on k∗ = |NS′
e (x)| we have k∗ ≤ cm: Appar-

ently we need m attributes A ∈ R having |NS∪{A}
e (x)| ≥ k∗

in order to reach the same count in the full subspace S′.
Because of c1 ≥ c2 ≥ . . . ≥ cm this holds for cm. Sec-
ondly, for an y to be element of NS′

e (x) it must be con-

tained in at least m neighbourhoods N
S∪{A}
e (x). An up-

per bound for the number of cases contained in that many

neighbourhoods is
∑r

i=m ni. Altogether, it is guaranteed
that k∗ ≤ min{cm,

∑r
i=m ni}, so we can use this min-term

as an upper bound the number of neighbours.

The probability pS of a random point belonging to NS
e (x)

varies with the participating attributes: pS(x) =
∏

A∈S pA(x).
With f(k;n − 1, p) being unimodal with a single peak at
(n− 1)p, for fixed k the cdf F (k;n− 1, p) is strictly decreas-
ing in p (the dataset size n is constant). Therefore we find
the maximal F (or minimal p-value) by minimising p. The
smallest p for a subspace consisting of m dimensions is ob-
tained from

∏m
j=1 pj as the pi are ordered increasingly.

The bound provided by the Lemma can be used to cut a
whole branch of the search tree.2 It uses information that is
easily calculated (ni, ci, pi), as we will see below. But the
bound relies on multiple F (k; ..) values, which is an expen-
sive operation (we used the algorithm from [20] to determine
F (k;n, p)). To speed up these calculations, we initially build
a tabulated approximation to first check if the exact calcu-
lation has realistic chances of beating the best value found
so far before. (As the calculated p-values may become very
small, we use log-transformed p-values in the program.)

To find ci, ni and pi we need the neighbours of x in indi-
vidual attributes and subspaces (which can be derived from
the neighbourhood of single dimensions due to the maximum
norm). For every x ∈ DR the 1D-neighbourhoods are easily
determined from the ordering of individual attribute values
(which has already been done for the rank-order transforma-
tion). As illustrated in Fig. 5, when sorting by individual
attributes, we store the record ID with the attribute value,
such that we can easily identify the IDs of the e nearest
neighbours from the previous and next e neighbours in the
sorted array. Note that the complexity of neighbourhood
identification becomes O(d · e), which may be considerably
smaller than the usually mentioned O(n2) for naive neigh-
bourhood search or O(n logn) for indexed search.

respective dimensions

relevant neighbours in

63

636363

63

63

91

44

select x

ID = 63

so
rte

d b
y A

so
rte

d b
y A

so
rte

d b
y A

2.4

2.5

2.5

2.6

2.6

2.3

2.7

2.7

value of 2.7 belongs to record with id 69

69

12

52

79

24

so
rte

d b
y A

3.1

3.1

3.2

3.3

3.4

3.4

3.5

3.5

1.6

1.8

2.0

2.1

2.1

2.4

2.7

2.8

44

4452

52

52

44

5212

12

12

12

79

79

79

79

88

88

44

63

18 18

88

24

69

24

69

4.1

4.3

4.4

4.4

4.6

4.7

5.0

5.1

2.7

2.9

3.1

3.2

3.2

3.4

4.1

4.2

321 4

so
rte

d b
y A

5

e

e
91 44: 11111

91: 11000

52: 11111

79: 10100

12: 01110 ...

bit coding of neighbourship

Figure 5: Using the sorted attributes to find neigh-
bours in NS

e (x).

For all records whose ID appear in at least one 1D-neighbour-
hood, for subsequent calls we bit-encode the belongingness
to all neighbourhoods and operate on these bitcodes rather

2The possibility of pruning is only checked if the best-so-
far value is considerably better than the current value. For
all experiments we have chosen a threshold on log(QV) −
log(bestsofar) > 100 in line 5 of Alg. 2.

than the full dataset. The bitcode resembles all necessary
information to determine ci and ni. Bit i is set if and only

if y ∈ N
{Ai}
e (x): (1) for cAi just count how often bit i is

set, (2) increase ni when i bits are set in total. When an
attribute A has been selected for the subsequent recursive
call, the number of data objects that lie in the higher dimen-
sional subspace decreases quickly, so we copy the bitsets into
a new array to avoid the traversal of the full array in deeper
branches of the search tree.

The goal of the depth-first search is to find those subspaces
with a high quality (small p-value) as fast as possible, such
that the pruning mechanism of Lemma 1 can become most
effective. We have already argued that the best score is
achieved for subspaces S with high counts k and small pS .
In both cases, the term k − n · pS becomes larger, so it is
used as a heuristic guideline which attribute we should try
first to arrive at highly scored subspaces. (That this term
is also the core in the Hoeffding bound (6) may be seen
as another justification.) We thus choose the attribute A
that maximises (cA − npS∪{A}) (cf. line 10 of Alg. 2; cA
corresponds to the count k we achieve in S ∪ {A}, cf. line
1).

The algorithm is thus prepared for both scenarios: Firstly,
with uninteresting datasets (without any local dependency
between attributes) all attributes are uniformly distributed
(after rank-order transformation). Initially, we have to con-
sider all data objects that are at least within the neigh-
bourhood of x in one dimension. As we proceed during the
search, some attributes A are included in the subspace S
under consideration. But due to the independence of vari-
ables, the inclusion of any attribute A in S reduces the data
objects by a factor of pA, so their number decreases quickly
with each recursive call. Secondly, with well pronounced
clusters, the maximisation of cA − npS leads us quickly to
the best scored subspaces S and from then on, the prun-
ing of Lemma 1 prevents us from wasting time on the all
subspaces of S.

3.4 Threshold Selection
We require the user to specify a significance level α: we count
only votes from subspaces which are guaranteed to signifi-
cantly deviate from the expected count. The neighbourhood
size e remains to be specified and we propose to use statis-
tical power to choose e. By choosing the significance level
α small enough we control the type I error rate, that is, we
avoid flagging a subspaces as interesting if it is not. A type
II error denotes the case that H0 is actually wrong but the
test does not recognise this. Limiting the type II error will
lead us to a minimal neighbourhood size e.

From H0 (independence of attributes) we assume that pS =∏
A∈S pA holds. H0 is already violated if pS is only slightly

higher, but a user probably wouldn’t care about a 1% higher
density. So we ask the user to provide a density factor f ,
say f = 1.5, she actually does care about and is willing to
miss only in β = 1% of all cases. To justify the participation
of any attribute A in the exceptional subspace, this factor
should apply to all attributes of the subspace. Therefore,
we define

p+S :=
∏
A∈S

(f · pA) (8)

n 2 3 4 5 6 7 8 9 10

2000 61 99 131 160 187 205 215 236 255
4000 88 157 220 279 332 372 394 437 475
8000 126 256 381 485 591 673 722 809 885

16000 181 405 641 875 1053 1219 1414 1497 1652
32000 261 658 1108 1523 1949 2308 2593 2772 3082
64000 374 1067 1864 2652 3472 4181 4755 5133 5751

Table 1: Necessary neighbourhood sizes for f = 2.0,
α = 0.01 (+Bonferroni adjustment), β = 0.1 for vari-
ous dimensionalities and dataset sizes.

to be the relevant threshold for type II errors: by specifying
a bound β on the probability of type II errors we limit the
probability of failing to reject H0 in case pS = p+S .

For the binomial test we determine a critical value q (the
(1 − α)-quantile of B(n − 1, pS)) and reject H0 in case the
observed count C ≥ q. The power of the test is given by
the probability of observing a count C < q (or C ≤ q− 1 as
counts are integer) in case of pS = p+S :

1− power(p+S) = β = F (q − 1;n− 1, p+S)

The critical value q as well as the power of the test is even-
tually determined by e (because e defines pA, which define
pS , cf. eq. (2) and (4)). By varying e we control not only q
but also the power of the test. Besides β ≥ 1 − power(p+S)
we additionally require q > 1 because we want q − 1 (used
for the determination of the power) to remain positive.

To find the appropriate values of e, we may simply increment
e until the desired level of β is reached. The reference value
p+S depends on the dataset size as well as the dimensionality
of the subspace S. Table 1 shows the required minimum
neighbourhood sizes e for various dimensions and dataset
sizes at f = 2.0 (α = 0.01 with Bonferroni adjustment for
the dataset size and β = 0.1). If the user is confident that
clusters have approx. dimensionality d, choosing e from the
respective columns guarantees a detection of subspaces with
density increased by a factor f (per dimension) within the
limits of type I and type II error α and β, resp. If the user
does not want to focus on a specific dimensionality (from
which a global e is chosen), the ROSMULD algorithm is
easily modified to use a different value of e for each subspace
dimensionality.

From the neighbourhood sizes in Table 1 we recognise that
for higher-dimensional subspaces e may cover around 20%
of the dataset size (e to the left and to the right). To achieve
this in grid-based approaches (like SCHISM), the discretiza-
tion of attributes must not exceed 5 bins. While ROSMULD
centers such a neighbourhood around each and every data
object, the subdivision in grid-based algorithms is fixed once
and forever. With such a coarse grid the locality of the
search is very poor and it becomes extremely unlikely to
robustly recognise small clusters.

3.5 Voting
Although we use only simple voting, that is, every data
object has the same weight when voting for a subspace,
one can think of arbitrary weights. A data object does
not vote for a subspace if the deviation is not significant
and the thresholds are determined such that it is equally
likely to exceed the critical value for a 2-dimensional or a
5-dimensional subspace. However, the degree of exceeding

the α-determined critical value may be quite different, so
the quality score (p-value) may be used directly as a voting
weight (e.g. − log(QS

e (x))).

4. EXPERIMENTAL EVALUATION
All datasets used are publicly available or were made avail-
able at http://public.ostfalia.de/~hoeppnef/rosmuld.

html. If not otherwise stated, we used α = 0.01 with Bon-
ferroni adjustment for multiple testing (for the size of the
dataset), β = 0.01 and a factor f = 2.0 throughout the
experiments.

Globally irrelevant attributes may be identified by calcu-
lating a (global) correlation matrix (entropy, Pearson cor-
relation, rank correlation, etc.) Due to their global nature,
however, they are not sensitive to a local correlation that af-
fects only a few points. The first two subsections will show
that the proposed algorithm succeeds in this task. We then
consider the case of well-separated clusters and real data
sets, and finally discuss the efficiency.

4.1 No Clusters
This is an important scenario especially for prototype-based
clustering algorithms like k-means, which always generate an
a priori specified number of clusters even if there are no clus-
ters at all in the data. Determining a clustering tendency is
an important step in cluster analysis (see e.g. [7, 18]). Ide-
ally the subspace filter should not propose subspace which
have no clustering tendency.

A 10-dimensional test data set of size 10.000 consisted of
uniformly distributed attributes, Gaussian distributed at-
tributes and attributes being a mixture of two Gaussians.
There is a considerable fluctuation in the data density and
k-NN-distance in this dataset, as can be seen from Fig. 6.
Both, QRIS and QSURFING therefore flag various subspaces
as interesting, although it has been generated from inde-
pendent attributes alone. The ROSMULD algorithm was
executed with e ∈ {300, 500, 700} and the result was always
the same: no subspaces were flagged as being interesting.

Scatter Plot Matrix

V1
0.5

1.0
0.5 1.0

0.0

0.5

0.0 0.5

V30

2

4
0 2 4

−4

−2

0

−4 −2 0

V5
0.6
0.8
1.0

0.60.81.0

0.0
0.2
0.4

0.00.20.4

Figure 6: Three dimen-
sions of dataset from
Sect. 4.1.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Two relevant
dimensions of dataset
from Sect. 4.2.

4.2 Small Clusters Hidden in Noise
When ROSMULD is applied to the two datasets from the in-
troduction (Fig. 1), the 2-dimensional x/y-space was flagged
as interesting only for the dataset on the right. Next, we gen-
erated a six-dimensional dataset with all attributes sampled

from a uniform distribution (unit interval). Among the 1000
objects, only 40 where drawn from a 3-dimensional Gaus-
sian distribution with standard deviation σ = 0.06. It is
difficult to recover the 3D-cluster visually from a 2D-scatter
plot matrix, because the density increases only slightly and
dense spots occur also by chance. Therefore the 40 addi-
tional points are coloured in red in Fig. 7. As we look for a
low-density cluster, we lower f to f = 1.5. ROSMULD suc-
cessfully identified the relevant subspace, only the 3D-subset
that contains the hidden cluster received votes.

When applying the quality measure of SURFING to this
dataset, we obtain the following values (we denote the in-
teresting attributes as A2, A3 and A6): Q({A2} = 0.269,
Q({A2, A3}) = 0.195 and Q({A2, A3, A6}) = 0.163. The
SURFING algorithm recognises interesting subspaces by an
increasing trend in the quality measure, however, in this
dataset the quality QSURFING decreases with dimension-
ality, so SURFING is not able to recover the relevant 3D
subspace.

Finally, a 10-dimensional dataset with a 5-dimensional small
cluster was randomly generated (uniformly distributed within
[0, 1], cluster edge length 0.07). The cluster is very sparsely
populated compared to the size of the dataset (5000 records).
Table 2 shows how often (among 10 runs) a cluster has
been selected using different thresholds for e from differ-
ent columns in Table 1. The actually detected subspaces
did not always correspond to the original 5D-subspace (but
only subspaces thereof), however, this was not to be ex-
pected given that we have implanted only 5-30 data objects
in a 5-dimensional space. Due to the random generation of
a few data objects only, it is very likely that the (estimated)
variance per dimension varies considerably. If most objects
are (by chance) close together in one dimension, only four
relevant dimensions will be discovered. Altogether, despite
the constant f = 2.0 and varying e-value, the small cluster
has been discovered in most of the trials.

cluster size e selected for dimensionality:
(# objects) 2 3 4 5 6 7 8

5 0 6 5 0 3 3 5
10 0 10 9 6 10 10 8
15 4 10 10 10 10 10 10
20 10 10 10 10 10 10 10
25 10 10 10 10 10 10 10
30 10 10 10 10 10 10 10

Table 2: Detection of a 5D-cluster (5-30 points) in
a random 10D-dataset of size 5000 (of out 10 runs).

4.3 Well-Separated Clusters
This work was motivated by the problem of finding small
clusters in the presence of many irrelevant attributes. We
nevertheless present results on well-separated clusters to de-
monstrate ROSMULDs broad applicability. We use the data-
sets from [17], where they were used to compare various sub-
space clustering algorithms. (The artificially generated data
is available from their web site.) The examples consists of
20-dimensional datasets each with 11 clusters of dimension-
ality 50%, 60% and 80% of the dataset dimensionality. From
the attached cluster labels we investigated the within-cluster
variance and identified the relevant attributes for each clus-

dataset size dim sec. most interest. subspaces
bike 731 5 ≤1 {A1, A4, A5}
wine qual. 6497 11 9.3 {A4, A8, A11}, {A6, A7}
pendigits 7494 16 111 {A6, A8, A10},

{A8, A10, A12},
{A8, A14, A16}

vowel 990 10 ≤1 {A1, A2, A4}

Table 3: Results on some UCI real world datasets.

ter. In the five datasets there are always 1 small cluster,
2 medium clusters (twice as large as the small one) and 8
large clusters (thrice as large as the small cluster).

We selected e for dimensionality 10 (column 10 in Table 1)
and 20 (not shown in Table 1) (and f = 1.5). In the latter
case, for each of the five datasets only 8-14 subspaces re-
ceived votes. For the largest example (S5500) 10 subspaces
were found corresponding exactly to 10 (out of 11) cluster
subspaces, only the smallest cluster was not found. The re-
sults for other examples were very similar; in another dataset
(S2500) 9 subspaces were detected, again the smallest one
was missed and the subspace of a second cluster was fully
contained in the subspace of another, the smaller subspace
received votes from both clusters. When assuming dimen-
sionality 10 a few more subspaces received a few additional
votes, but the top-ranked subspaces were not affected. For
another set of examples with an increasing level of noise the
performance did not degrade, the top-ranked subspaces did
not change (for run-times see Sect. 4.5).

The number of votes received corresponds very well to the
size of the included clusters. In these datasets there was only
one cluster per subspace, so the data objects that voted for
the subspace actually form the cluster. This does not hold
in general, of course, but even though the subspace filter
was not meant as a clustering algorithm, its results could be
used to initialise clustering algorithms (initial clusters for
k-means, density thresholds for density-based clustering).

4.4 Real Datasets
We investigate some real datasets (shown in Table 3) from
the UCI repository [13]. No cluster-class relationship was
examined (as done, e.g., by [17]) to evaluate the subspaces:
firstly, we want to evaluate the discovered subspaces and
do not (yet) have clusters, and secondly, we cannot see any
convincing reason3 why clusters should generally follow some
class labels that may have been attached for reasons that
have nothing to do with the grouping tendency of the data
(see also the pendigits example below). We briefly discuss
the meaningfulness of the discovered subspaces instead.

The first dataset from the UCI repository is the wine quality
dataset. It consists of 4898 instances and 11 attributes (plus
class information). The most interesting subspaces consisted
of the attributes alcohol, residual sugar and density. Its
relevance is confirmed by winemakers, who get reasonably-
accurate estimates of alcohol content and residual sugar lev-
els of wines from their specific gravity measurements.

3[17] argue: “Therefore the idea is to use labelled data with
the assumption that the natural grouping of the objects is
somehow reflected by the class labels.”

The algorithm was also applied to the pendigits dataset for
pen-based recognition of handwritten digits. It consists of
10992 instances and 16 attributes. The most interesting
subspaces consisted of attributes 6, 8, 10 and 8, 10, 12. The
16 attributes denote eight pairs of (x, y) pen-coordinates,
thus the subspaces denote a sequence of three successive y-
coordinates. This is easily explained by noting that many
digits start and end differently, but the mid-part consists
of a downward motion (decreasing y-positions at time 3,
4, 5). Another interesting subspace consisted of the 4th,
7th and 8th y-coordinates (cf. Fig. 8). For various hand-
written numbers in this dataset, these y-positions are close
together: With digits 0, 5, 6 and 8 the 4th position has
low y-values and the 7th and 8th y-position have high y-
coordinates, while the digits 2, 3 and (some types of) 5 have
intermediate values at the 4th y-position and low values at
7th and 8th y-position.

0 20 60 100

0
20

60
10

0

px

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100
0

20
60

10
0

px

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

0 20 60 100
0

20
60

10
0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100
0

20
60

10
0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

px

py

0 20 60 100

0
20

60
10

0

0 20 60 100

0
20

60
10

0

py

0 20 60 100

0
20

60
10

0

py

0 20 60 100
0

20
60

10
0

py

0 20 60 100

0
20

60
10

0

py

0 20 60 100

0
20

60
10

0

py

Figure 8: Excerpt of the pendigits dataset. The
eight (x,y)-pairs were used to draw the original dig-
its. The green overlaid lines connect the 4th, 7th
and 8th y-positions; note that the shape of the green
lines is similar across different digits (= classes).

The bike sharing dataset summarises the number of daily
bike rentals. From the five numerical dimensions (feeling
temperature, humidity, windspeed, count of casual users,
count of registered users) the most interesting subspace con-
sisted of three attributes: temperature, casual and registered
users. The data objects that vote for this subspace resem-
ble similar days of low temperature and few (casual/regular)
users and days of high temperatures with some casual and
some or many regular users, which is a meaningful depen-
dency.

4.5 Efficiency
For the experiments we used an Intel quad core mobile i7,
2.4 Ghz, with 700 MB heap space assigned (which was not
nearly used, ROSMULD has low memory consumption).
Note that the ROSMULD algorithm lends itself for par-
allelization because every data object can be handled in-
dependently. However, the run-times reported here come
from a single-threaded Java program. We compare the run-

times with [17], where a similar setting was used (quad core
Opteron 2.3 GHz with RAM limited to 1.5 GB, nothing is
said about the number of cores that were actually used).

First we report run-times for the datasets used in Sect. 4.3.
For the neighbourhood size e we (under-) estimated the di-
mensionality of clusters to be half of the dataset dimension-
ality (that is, 10 in the 20-dimensional datasets). Figure
9 shows the run-time of the ROSMULD algorithm versus
the dataset size and noise percentage in comparison to the
run-times of subspace clustering algorithms reported in [17].
Note that a log-scale is used for all run-times. As already
mentioned, the clusters contained 50%, 70% and 80% of
the available 20 attributes, which is not the intended sce-
nario of the ROSMULD algorithm. Nevertheless, the per-
formance in Fig. 9(left) is very competitive. By increasing
the noise level we approach the intended application of the
ROSMULD algorithm and the performance in Fig. 9(right)
is only beaten by Proclus (prototype-based approach) and
partially by Mineclus (cell-based clustering). Note that the
neighbourhood size e is not constant, but increases with the
dataset size (cf. Table 1).

Figure 10 shows the scalability of the ROSMULD algorithm
for three clusters of different density in a 5-dimensional sub-
space for various dataset sizes and dimensionalities. Figure
10(left) shows run-times for datasets twice as large as those
in Fig. 9, different dimensionality as well as for two different
assumption on cluster dimensionality (lower curve: 5, up-
per curve: 10). On the right of Fig. 10 the scalability wrt.
the dimensionality of the dataset is shown. As the numbers
show, ROSMULD scales well.

The competing approaches RIS and SURFING have been
reported to require much larger run-times. The Apriori
approach embedded in RIS leads to extremely large run-
times for high-dimensional clusters, as the detection of a
12-dimensional interesting subspace requires all 212− 1 sub-
spaces to be explored beforehand (see for instance the results
in [9]). SURFING seems to suffer from similar problems, the
only case of 12-dimensional cluster (Table 1 of [2]) took al-
most 4.5 hours to find (on a 2.8 GHz CPU). And also the
grid-based SCHISM algorithm is outperformed (cf. Fig. 9).

5. CONCLUSIONS
We have proposed a subspace filter for clustering tasks, which
is capable of identifying subspaces in case of both, well-
separated clusters and small clusters in a very noisy envi-
ronment. This is challenging, because small clusters hidden
in heavy noise are difficult to robustly distinguish from the
background. Locally dense areas are not reported if they are
caused by fluctuation in the univariate distributions only,
such that the reported subspaces contain only attributes
that truly contribute to the abnormally high density. In the
experiments the proposed ROSMULD algorithm was very
robust against noise and scaled well with the dataset size
and the dataset dimensionality.

There are many directions for future work. First, the ROS-
MULD algorithm does not only provide the relevant sub-
spaces, but may also provide the individual data objects that
voted for this subspace. These data objects are likely to be-
long to the clusters of the respective subspace, so they may

be an excellent initialisation for, say, efficient prototype-
based clustering algorithms. Second, the run-time can still
be improved: Up to now, the data objects are processed
independently, which is good for parallelization, but once
a data object x has voted for subspace S, many objects of
NS

e (x) may also vote for the same subspace. If we attach S
as a label to y ∈ NS

e (x), we may evaluate this subspace first
for y and gain an advantage for pruning. Density estimation
techniques as proposed in [16] may be useful to improve the
run-time complexity further.

References
[1] I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC:

Dimensionality Unbiased Subspace Clustering. In Sev-
enth IEEE International Conference on Data Mining
(ICDM 2007), pages 409–414. Ieee, Oct. 2007.

[2] C. Baumgartner, K. Kailing, H.-P. Kriegel, P. Krüger,
and C. Plant. Subspace Selection for Clustering High-
Dimensional Data. In ICDM, 2004.

[3] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. Proc.
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 84–93, 1999.

[4] M. Dash, K. Choi, P. Scheuermann, and H. Liu. Feature
selection for clustering - A filter solution. Data Mining,
2002. ICDM, 2002.

[5] M. Dash and H. Liu. Feature selection for clustering.
PAKDD, 2000.

[6] J. Dy and C. Brodley. Feature selection for unsuper-
vised learning. The Journal of Machine Learning Re-
search, 5:845–889, 2004.

[7] B. Hopkins and J. Skellam. A new method for determin-
ing the type of distribution of plant individuals. Annals
of Botany, XVIII(70), 1954.

[8] K. Kailing, H. Kriegel, P. Kröger, and S. Wanka. Rank-
ing interesting subspaces for clustering high dimen-
sional data. In PKDD, volume 2838, pages 241–252,
2003.

[9] F. Keller, E. Muller, and K. Bohm. HiCS: High Con-
trast Subspaces for Density-Based Outlier Ranking. In
2012 IEEE 28th International Conference on Data En-
gineering, pages 1037–1048. Ieee, Apr. 2012.

[10] H. Kriegel, P. Kroger, M. Renz, and S. Wurst. A
Generic Framework for Efficient Subspace Clustering
of High-Dimensional Data. In Fifth IEEE International
Conference on Data Mining (ICDM’05), pages 250–257.
Ieee, 2005.

[11] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data. ACM Transactions on Knowl-
edge Discovery from Data, 3(1):1–58, Mar. 2009.

[12] Y. Li, M. Dong, and J. Hua. Localized feature selection
for clustering. Pattern Recognition Letters, 29(1):10–18,
Jan. 2008.

[13] K. B. Lichman and M. UCI Machine Learning Reposi-
tory. PhD thesis, University of California, Irvine, 2013.

2000 3000 4000 5000 6000 7000

Runtime vs Dataset Size

dataset size

ru
nt

im
e

(s
ec

)

1

10

100

1000

●

●

●
●

●

●

●

Doc
Mineclus
Proclus
Schism
Firs
StatPc
Ross

20 40 60 80

Runtime vs Noise

noise percentage

ru
nt

im
e

(s
ec

)

1

10

100

1000

●

● ●

●

●

●

Doc
Mineclus
Proclus
Schism
Fires
StatPc
Ross

Figure 9: Run-times for datasets from Sect. 4.3.

●

●

●
●

●
●

2000 4000 6000 8000 10000 12000

Runtime vs Dataset Size

data set size

ru
nt

im
e

(s
ec

)

1

10

100

1000

●

●

●

●
●

●

● 10−dim
15−dim
20−dim

●

●

●

●

●

10 15 20 25 30

Runtime vs Dimensionality

data set dimensionality

ru
nt

im
e

(s
ec

)

1

10

100

1000

●

dataset size 2000
dataset size 4000
dataset size 6000
dataset size 8000

Figure 10: Run-time depending on size of the dataset (left) and dimensionality (right).

[14] H. Liu and L. Yu. Toward integrating feature selec-
tion algorithms for classification and clustering. . . . and
Data Engineering, IEEE Transactions on, 17(4):491–
502, 2005.

[15] G. Moise and J. Sander. Finding non-redundant, sta-
tistically significant regions in high dimensional data:
a novel approach to projected and subspace clustering.
In ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 533–541, 2008.

[16] E. Müller, I. Assent, R. Krieger, S. Günnemann, and
T. Seidl. DensEst: Density Estimation for Data Min-
ing in High Dimensional Spaces. SDM, pages 175–186,
2009.

[17] E. Müller, S. Günnemann, I. Assent, and T. Seidl. Eval-
uating clustering in subspace projections of high dimen-
sional data. Proceedings of the VLDB . . . , 2(1):1270–
1281, 2009.

[18] E. Panayirci and R. Dubes. A test for multidimensional
clustering tendency. Pattern Recognition, 16(4):433–
444, 1983.

[19] L. Parsons, E. Haque, H. Liu, and L. Parson. Sub-
space Clustering for High Dimensional Data - A Re-
view. ACM SIGKDD Explorations Newsletter, 6:90–
105, 2004.

[20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes. 2007.

[21] K. Sequeira and M. Zaki. SCHISM: A New Approach
to Interesting Subspace Mining. Int. J. of Business In-
telligence and Data Mining, 1(2):137—-155, 2005.

[22] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A
survey on enhanced subspace clustering. Data Mining
and Knowledge Discovery, 26(2):332–397, Feb. 2012.

