
appeared in: Proc. SIAM Int. Conf. on Data Mining 2014, Philadelphia, USA, pp 560-568

Less is More: Similarity of Time Series under Linear Transformations

Frank Höppner

Ostfalia University of Applied Sciences, Germany

f.hoeppner@ostfalia.de

Abstract

When comparing time series, z-normalization preprocessing

and dynamic time warping (DTW) distance became almost

standard procedure. This paper makes a point against

carelessly using this setup by discussing implications and

alternatives. A (conceptually) simpler distance measure is

proposed that allows for a linear transformation of amplitude

and time only, but is also open for other normalizations

(unachievable by z-normalization preprocessing). Lower

bounding techniques are presented for this measure that

apply directly to raw series.

1 Introduction

When recording time series, we need two measurement
devices, one for the time and one for the value of
interest, such as temperature, velocity or distance.
Suppose two people observe the same process and we
compare their observations, what are the differences we
will most likely face?

• offset: The devices may not be properly calibrated:
the calibration of a thermometer based on the
boiling point of water varies with pressure. If the
calibration was done under different conditions, we
will observe an offset. For the temporal domain,
if observers do not start their stop watches at the
same time, there will be a constant temporal offset
between both series.

• scale: If distance is measured by counting rota-
tions and multiplying the count by the radius of
the wheel, a variation in the radius (tire inflation
pressure) leads to a different scaling factor of dis-
tance. The same applies to the temporal scale if the
digital clocks do not have identical quartz crystals.

• noise: As no measurement is exact, we expect
some random observational error (typically more
pronounced for amplitude than for time).

Of course, more intriguing influences are possible,
for instance, in a long term observation the daily tem-
perature and air pressure may influence the measure-
ments and lead to locally fluctuating errors. But the

above-mentioned effects, which represent a linear trans-
formation of any of the two domains, are so likely and
elementary that we should deal with them first before
seeking for more complex explanations for differences in
time series. How does the time series mining literature
cope with these likely effects?

Time: The problem of a temporal offset is often
solved by aligning the time series during preprocessing.
This may be done by rather simplistic (e.g., removal
of all leading values close to zero) or by highly com-
plex algorithms (e.g. [9]). A second frequently applied
approach is to use dynamic time warping (DTW) mea-
sures that allow for (almost) arbitrary stretching and
squeezing of the temporal axis to achieve a better fit
of the series. (We will review DTW later.) Sometimes
uniform scaling of time is considered (e.g. [6]), but no
temporal offset, so we still need to align the series first.

DTW requires many more parameters (the warping
path) than a linear temporal transformation (only offset
and scale), so recovering a linear transformation should
be more robust. It has also been reported that uniform
scaling performs superior for applications such as mo-
tion capturing, gait recognition or query-by-humming
[6, 7, 4]. Yet, for the general case, linearly transformed
time goes almost unconsidered: in [3] (published after
work on uniform scaling [6, 7, 4]) a broad comparison
of time series similarity measures is carried out, but the
list of distance measures does not contain a measure
dedicated to the likely setting of just linear transforma-
tions.

Amplitude: To cope with differences in ampli-
tude, the most common approach of z-normalization
is typically part of the preprocessing: time series are
shifted to have zero mean and re-scaled to unit vari-
ance. Is the common z-normalization the right answer
to all effects mentioned above? Figure 1(a) depicts se-
ries, where the classes (red/blue) are distinguished by
the absolute slope of the series: in meteorology a change
in air pressure by more than 1 hPa per hour is highly
relevant for stormy weather, but the exact air pressure
is meaningless. For case (b) all data is measured by

0

x2

0

0

0

2
mbar

h

z−normalized

(a) (b)

z−normalized

Figure 1: Z-Normalization destroys potentially relevant
properties to distinguish the red from the blue series.

the same device (or we have a unique zero point), so
the absolute values or ratios may become meaningful:
in a financial market application, we may (regardless of
the price level) look for situations where the price level
doubles. In both cases, after z-normalization (bottom
row), we have lost all means to distinguish both cases
from each other. These examples show that it may not
be advisable to consider z-normalization as the one and
only normalization step, because scale and shift may
carry relevant information, too.

Noise: Despite the presence of noise, most of the
literature on comparing similarity measures (e.g. [3])
does not consider, say, smoothing filters, but apply the
distance measures directly to (z-normalized) series.

The contributions of this paper are:

– Raise of awareness how preprocessing affects dis-
tance and that it should always be adapted to the
applications need.

– Definition of a time series similarity measure that
respects a linear transformation in both, the longi-
tudinal (temporal) and transversal (vertical) axis,
because this appears to be the most likely setting.

– Meaningful restrictions of the linear transforma-
tions are motivated and compared to standard z-
normalization.

– New lower bounds for this measure (includes nor-
malization step that is part of the distance).

– Experimental evaluation that supports the claim of
linear transformations being the most likely setting,
shows the benefit of different normalizations, and
provides insights in the ambiguous role of DTW’s
warping flexibility.

2 Background / Related Work

A time series x of length n is an ordered sequence of real
numbers: x = (xi)1≤i≤n ∈ Rn, which is also written as
|x| = n. By x..i we denote a prefix of x of length i ≤ n:
x..i = (x1, . . . , xi). By s · x +m for s,m ∈ R we denote
scalar operations, that is, s · x +m = (s · xi +m)1≤i≤n.

Among the most frequently used time series similar-
ity measures for two time series x and y is the Euclidean

distance1, which is defined for series of equal length n:

ED(x,y) =

n∑
i=1

(xi − yi)2

ED performs surprisingly well in 1-Nearest Neighbour
classification for a range of datasets [3] (although the
reasons for this are somewhat subtle).

We can redefine the squared Euclidean distance
recursively as ED(x..i,y..i) = ED(x..i−1,y..i−1)+(xi−
yi)

2, that is, we obtain the total distance from the
distance between the (i−1)-prefixes of x and y and the
distance of the last two remaining elements; the latter
term corresponds to an alignment of the last elements
to each other. With dynamic time warping (DTW) this
alignment is more flexible as elements from a series may
be skipped, if that leads to smaller costs:

DTW (x..i,y..j) = (xi − yj)2 +

min {DTW (x..i−1,y..j),

DTW (x..i−1,y..j−1), DTW (x..i,yj−1)}

This scheme allows for a flexible alignment of indices
i and j and is solved by dynamic programming in
O(n2) [2]. Many different flavours of DTW have been
proposed, see [3] for an overview.

The idea of considering only linear transformation
is not really new. In [7] uniform scaling (US) of a query
y (of length m) to a new length p is considered (but no
offset), to better match a reference series x (of length
n) under the Euclidean distance:

US(x..n,y..m) = ED((xi)1≤i≤p, (yi/m·p)1≤i≤n)

In [4] a combination of US and DTW is proposed: the
series is stretched first before then DTW is applied.
In [1] linear transformations are considered, but with
a focus on finding short series within longer series.

A technique for bounding the expected outcome of,
say, uniform scaling is to determine the upper and/or
lower envelope around a series [6, 4]: for any point xi one
can restrict the set A of possible indices j such that xi is
eventually aligned with an yj where j ∈ A. (The more
the range of scaling factors is limited, the fewer indices
are in A.) Thus, xi will be matched to a value yj lying
within some bounds li ≤ yj ≤ ui (with li = minj∈A yj
and ui = maxj∈A yj). The series of li and ui are the
lower and upper envelope, resp. These envelopes can
be used to find a lower bound for the distance measure

1Actually, we use the squared Euclidean distance whenever
referring to the Euclidean distance. As the measure will be used
to order time series according to their similarity, the application

of a strictly increasing function like the square root can safely be
skipped without affecting the order.

without having to know the finally chosen alignment:
As long as the value of xi falls within the envelope
we may luckily find a j with xi = yj (so we assume
no contribution to the distance). Only for values xi
outside the envelope we know for sure that the distance
is increased (regardless of the alignment):

DTW (x,y) ≥
n∑
i=1

 (xi − ui)2 if xi > ui
(xi − li)2 if xi < li

0 else

A typical application is 1-Nearest-Neighbour classifica-
tion: Once a query has been compared to a series and
has achieved a low distance d, we are only interested in
the exact distance to yet another series if it drops below
d – otherwise we may skip the calculation early.

3 Linear Transformation Distance

3.1 Vertical Scale and Offset As already men-
tioned, it is common to z-normalize time series prior
to the application of a distance measure to account for
variations in amplitude. As a result of this standardiza-
tion (x̄ = 0, ‖x‖ = 1), the Euclidean distance becomes
the Pearson’s distance

ED(x,y) = 2

(
1−

n∑
i=1

xiyi

)
= 2− 2ρx,y

where ρx,y is the correlation coefficient of both series.
Let us address normalization from a different per-

spective now. An alternative approach is to ask for the
Euclidean distance under the best possible amplitude
scale s ∈ R and mean shift m ∈ R of one of the series:

RDa(x,y) = min
s,m∈R

ED(s · x +m,y)(3.1)

This is equivalent to a regression task where we try to
predict the values of series y from series x by means of
a linear regression yi = s · xi + m, hence we name it
regression distance (RD). From linear regression we
know that (3.1) becomes minimal for

s =

∑
xiyi − 1

n

∑
xi
∑
yi∑

x2
i − 1

n (
∑
xi)2

(3.2)

m =
1

n

(∑
yi − s

∑
xi

)
(3.3)

Note that RDa is asymmetric: If the range of series
x is [0,1000] and the range of y is [0,1], we would either
scale x down to [0,1] or y up to [0,1000]. The sum of
(squared) differences will obviously be affected by the
scale. In application such as 1-NN classification this
is not even a problem, because all training series are
compared against a single test series. In general, to

overcome this asymmetry, we define RD as:

RD(x,y) = min{RDa(x,y), RDa(y,x)}(3.4)

If we stick to preprocessed data, that is, time series
x and y with unit variance and zero mean, is there any
difference between ED(x,y) and RD(x,y)? There is an
important difference: Remember that ED = 2− 2ρx,y,
that is, for ED uncorrelated time series are more similar
(ρ = 0, ED = 2) than perfectly (negatively) correlated
time series (ED = 4). With RD, on the other hand, a
perfect negative correlation means that we can perfectly
predict y from x, so the sum of squared error becomes
small (RD ≈ 0). With RD uncorrelated time series
receive the largest distance. Would such a measure be
useful? When looking for similar series, it is as suprising
to see the same pattern inverted (ρ = −1) as to see
a copy of the original series. So, yes, there might be
applications where such a measure may actually be very
useful (cf. Sect. 6.3). On the other hand, we also believe
that the application dictates what is similar and what is
not. So in case negatively correlated subsequences are
not considered as similar, we can define a constrained
regression distance. Let us denote the set of admissible
regression parameters (s,m) by ΩR. So far we had
ΩR = R2, now we consider ΩR = R≥0 × R where
only non-negative amplitude scaling factors are allowed.
Now, (3.1) becomes minimal for

s = max

{
0,

∑
xiyi − 1

n

∑
xi
∑
yi∑

x2
i − 1

n (
∑
xi)2

}
(3.5)

m =
1

n

(∑
yi − s

∑
xi

)
(3.6)

(Proof omitted.) For negatively correlated series
the solution at s = 0 is optimal: a flat line achieves a
smaller distance than any other scaling factor s > 0.

Apart from the two variants already discussed, we
may also define other meaningful sets of admissible
values: ΩR = {1}×R for mean shift only, ΩR = R×{0}
for amplitude scaling only (and with ΩR = {1}×{0} RD
collapses to ED). It is important to note that equivalent
distances cannot be achieved by preprocessing alone:
With ΩR = R× {0} and series x = (1, 2, 1, 1, 1, 1), y =
(1, 2, 3, 2, 1, 1) and z = (1, 1, 2, 3, 2, 1) we obtain different
optimal scaling factors s when comparing x to y or to
z – even after transforming all series to unit variance.
Rescaling series only once during preprocessing would
thus either overestimate d(x,y) or d(x, z).

3.2 Temporal Scale and Offset Next, we address
scale and shift in the temporal domain. Suppose a
function f(i) has been sampled at integer time points
1 ≤ i ≤ n leading to time series yi = f(i). We introduce

parameters w ∈ R for time warp (dilation) and o ∈ N
for temporal offset (translation), which would lead us
to time series y′i = f(w · i+ o). When comparing with a
reference series x, we may again seek for the best match
under the admissible values for w and o. As the function
f is typically not available, we have to use the given
samples yi to approximate y′i = yw·i+o (with w · i + o

rounded to closest integer). Thus we consider

ED(x, (yw·i+o)1≤i≤n)(3.7)

where we have to take care that the index range of the
sampled series y is not exceeded, that is, 1 ≤ w · i+ o ≤
|y| for 1 ≤ i ≤ |x|. By Iwo we denote the set of (rounded
integer) indices we obtain with w and o:

Iwo := {bw · i+ o+ 1/2c | i = 1..|x|}

Furthermore, we want to avoid spurious matches, say,
matching the full series x to only two points of y. There
should be a considerable portion of both time series
involved in the comparison. To match a series x to a
series y of length n using (3.7), we require that at least
δ ·n points of y must be involved in the comparison. We
define the set of admissible values ΩT ⊆ R2 as

ΩT := {(w, o) | Iwo ⊆ [1, |y|] ∧ |Iwo| ≥ δ|y| }(3.8)

(with |y| being the length of y) and the translation /
dilation distance as the Euclidean distance under the
best linear transformation of time:

TDa(x,y) = min
(w,o)∈ΩT

ED(x, (yw·i+o)1≤i≤|x|)(3.9)

Again, this measure is asymmetric, because x is mapped
to a (stretched) subsequence of y but not the other
way round (cf. Fig. 2). We establish symmetry by
considering the case of embedding y into x, too:

TD(x,y) = min{TDa(x,y), TDa(y,x)}(3.10)

Unfortunately, there is no closed-form solution to deter-
mine the optimal w and o.

sp ep

x

y

0

0

|y|

|x|

Figure 2: TDa(x,y): embedding x into y.

3.3 Linear Transformation Distance Finally, the
distance measure we are interested in, combines RD and
TD in one measure. We define the linear transforma-

tion distance LTDa(x,y) =

min
(w,o)∈ΩT ,(s,m)∈ΩR

ED (s · x +m, (yw·i+o)1≤i≤n)

That is, we allow for a longitudinal shift and scaling of
series y and amplitude scaling and offset of the series
x such that they fit best under the Euclidean distance.
Again, LTD(x,y) := min{LTDa(x,y), LTDa(y,x)}.

4 Direct Calculation of LTD

A straightforward implementation of LTDa is given by
algorithm 4.1. It picks subsequences of y by choosing
start- and end-points that respect the δ-constraint of
(3.8). For each setting the optimal parameters (s,m)
are determined (according to the chosen ΩR, e.g. (3.2)-
(3.3) or (3.5)-(3.6)).

Algorithm 4.1. Calculation of LTDa(x,y)
overlap = δ · |x|, best =∞
for (sp in 1..(|y|-overlap)) //map x1 → ysp

for (ep in (sp+overlap)..|y|) //map x|x| → yep
w = (ep− sp)/|x|
for (i in 1..|x|) y′i = yw·i+sp // transf. time
determine s,m // e.g. (3.2)-(3.3) or (3.5)-(3.6)
for (i in 1..|x|) x′i = s · x′i +m // transf. ampl.
if ED(x′,y′) < best

best = ED(x′,y′)
return best

The algorithm appears quite expensive due to three
nested loops (O((1 − δ)2 · n3) assuming |x| = |y| = n).
In comparison with DTW the difficulty is that we
cannot utilize dynamic programming because we lack
a recursive definition of LTD. For n = m = 10, δ = 0.5
we obtain 15 admissible parameters (w, o) that lead to
the following 15 alignments (one per row):

alignment of xi → yj with i:j shown below w o

1:1 2:2 3:2 4:3 5:3 6:4 7:4 8:5 9:5 10:6 0.5 1
1:1 2:2 3:2 4:3 5:4 6:4 7:5 8:5 9:6 10:7 0.6 1
1:1 2:2 3:3 4:3 5:4 6:5 7:5 8:6 9:7 10:8 0.7 1
1:1 2:2 3:3 4:4 5:5 6:5 7:6 8:7 9:8 10:9 0.8 1
1:1 2:2 3:3 4:4 5:5 6:6 7:7 8:8 9:9 10:10 0.9 1
1:2 2:3 3:3 4:4 5:4 6:5 7:5 8:6 9:6 10:7 0.5 2
1:2 2:3 3:3 4:4 5:5 6:5 7:6 8:6 9:7 10:8 0.6 2
1:2 2:3 3:4 4:4 5:5 6:6 7:6 8:7 9:8 10:9 0.7 2
1:2 2:3 3:4 4:5 5:6 6:6 7:7 8:8 9:9 10:10 0.8 2
1:3 2:4 3:4 4:5 5:5 6:6 7:6 8:7 9:7 10:8 0.5 3
1:3 2:4 3:4 4:5 5:6 6:6 7:7 8:7 9:8 10:9 0.6 3
1:3 2:4 3:5 4:5 5:6 6:7 7:7 8:8 9:9 10:10 0.7 3
1:4 2:5 3:5 4:6 5:6 6:7 7:7 8:8 9:8 10:9 0.5 4
1:4 2:5 3:5 4:6 5:7 6:7 7:8 8:8 9:9 10:10 0.6 4
1:5 2:6 3:6 4:7 5:7 6:8 7:8 8:9 9:9 10:10 0.5 5

Here, a pair i : j means that xi is mapped to
yj (and to calculate the distance in one of the 15
alignments all (xi − yj)2 have to be summed up). The
first four index pairs in the first two lines are identical
and similar situations can be spotted elsewhere, which
raises the hope for saving computational costs when
computing all uniform warping paths simultaneously to
find the best. But there seems to be no systematic

way of utilizing calculations from one row for the
calculation of another row. To discover the saving
potential we employed Sequitur [10] to find a more
compact calculation: Whenever there is a partial sum
of at least two distances (xi− yj)2 (shown as i:j) that is
shared among two paths, it introduces a local variable
that is computed only once (represented by a rule in
Sequitur). Utilizing intermediate variables saves us
from calculating individual distances twice. In the
end, we determined how many operations are still left
compared to the naive implementation. The result is
shown in Table 1. Sequitur does a very good job, but
as the last column shows, the computational effort still
remains above O(n2).

n #naive #seq #seq/#naive #seq/n2

20 1100 638 0.58 2.75

30 3600 1895 0.52 2.10
40 8400 3951 0.47 2.47

50 16250 6984 0.42 2.79

60 27900 11171 0.40 3.10

Table 1: How often are distance terms (xi − yj)
2

accumulated by the naive algorithm (#naive) and by
Sequitur (#seq) depending on series length n.

However, we do not intend to choose a δ as low
as 0.5 but want to compensate for small translational
and dilational differences only. (We will use δ = 0.9
throughout all experiments.) For short series, LTD is
computed quite fast with the naive implementation. To
speed up the calculation of LTD in settings such as 1-
NN classification as well as longer series, we consider
lower bounds of LTD in the next section.

5 Bounding LTD

The goal of bounding any distance measure is to skip
distance calculations because we are not interested in
an exact calculation if the value is guaranteed to stay
above some thresholds (cf. Sect. 2). The difficulties
with bounding LTD are twofold: First, we have to
estimate the effect of two linear transformations on the
distance and secondly, compared to uniform scaling the
additional temporal offset enlarges the set of indexes j
to which a point xi is eventually mapped in y.

Corollary 5.1. Given time series x and y of length
n with sy :=

∑
i yi, syy :=

∑
i y

2
i , sxy :=

∑
i xiyi and

bounds ly ≤ sy ≤ uy, lyy ≤ syy and lxy ≤ sxy ≤ uxy.
The regression distance RDa(x,y) is bounded by

RDa(x,y) ≥ (nsxx − s2
x)lyy − sxxby + 2b∗ − nbxy

nsxx − s2
x

with sx =
∑n
i=1 xi, sxx =

∑n
i=1 x

2
i

by = max{l2y, u2
y}, bxy = max{l2xy, u2

xy}
b∗ = min{sxlxyly, sxuxyuy, sxlxyuy, sxuxyly}

Proof. Substituting (3.2) and (3.3) into the definition of
RDa(x,y) leads to

RDa(x,y) =
(nsxx − s2

x)syy − sxxs2
y + 2sxsxysy − ns2

xy

nsxx − s2
x

Note that the term (nsxx−s2
x) corresponds to n

∑
i(xi−

x̄)2 and is thus guaranteed to be positive. For syy, sy
and sxy we do not know exact values but have upper
and lower bounds. As the denominator is known, we
have to consider the nominator only. We obtain a lower
bound by (1) replacing syy in the first term by its lower
bound, (2) replacing s2

y in the second term by by, (3)
replacing sxsxysy by b∗ and (4) replacing s2

xy by bxy.

To use Corollary 5.1 we have to provide the various
bounds under a linear temporal transformation of y.

Corollary 5.2. Given time series x and y of length
n and a linear index mapping f (aligning xi with yf(i))

f(i) :=

⌊
(ep− sp)

n
· i+ sp+

1

2

⌋
= j

where sp ∈ [fsp, tsp] (fsp is an acronym for “from start
point”, tsp for “to start point”), ep ∈ [fep, tep], we have
ly ≤ sy ≤ uy, lyy ≤ syy and lxy ≤ sxy ≤ uxy for

lyy = min{
∑k+δn
j=k y2

j |fsp ≤ k < tsp}

ly = C + minP + minS +
∑G
i=1 min{0,minDi}

uy = C + maxP + maxS +
∑G
i=1 max{0,maxDi}

lxy =
∑
i min{xi · li, xi · ui}

uxy =
∑

max{xi · li, xi · ui}

where Ai = [fsp + i · (fep − fsp)/n, tsp + i · (tep −
tsp)/n], li = minj∈Ai

yj, ui = maxj∈Ai
yj, g =

1/(1 − (fep − tsp)/n), G = dn/ge, C =
∑fep
j=tsp yj,

P = {
∑tsp−1
j=k yj |fsp ≤ k < tsp}, S = {

∑k
j=fep yj |fep ≤

k < tep} and Di = {yj |i · g ≤ j < (i+ 1) · g}.

Proof. First, note that all considered mappings (with
sp ∈ [fsp, tsp], ep ∈ [fep, tep]) share a common index
subrange: The full index range of x, 1 ≤ i ≤ n, is
mapped to the index range sp ≤ j ≤ ep of y and
thus always contains the subrange [tsp, fep] (denoted
as the “core” range hereafter, cf. Fig. 3). Thus, the sum∑n
i=1 yf(i) addresses all elements yj with j ∈ [fep, tsp]

at least once (possibly more often).
Bounding syy is the easiest part because all sum-

mands are positive. We need only a lower bound of

y

sp ep

x

tepfeptspfsp

core

suffixprefix

Figure 3: Mapping x to y: when choosing sp ∈ [fsp, tsp]
and ep ∈ [fep, tep] the core index range [tsp, fep] is
always involved.

syy and obtain it from summing δn elements (which is
the required overlap), starting from the admissible start
position that yields the smallest sum (= lyy).

Bounding sy =
∑
yf(i) is more complicated. All

core elements contribute to the sum sy (summand C),
but that leaves some elements unconsidered. The core
sum may become larger or smaller by adding further
elements from the prefix or suffix (cf. Fig. 3). From the
set of possible prefix sums P and suffix sums S we find
the smallest (resp. largest) partial sum and consider it in
li (resp. ui) via the second and third summand. Finally,
we have to take care of the elements that may be added
more than once. From the range of possible scaling
factors we can find how many yj will be double-counted
at most (for scaling factor w every g := 1/(1−w) indices
we sum an element twice; this number becomes largest
for the smallest factor wmin = (fep − tsp)/n). We
organize the yi values in groups of g elements (sets Di)
and add the smallest/largest element of this group to
the lower/upper bound of sy (last sum of li/ui). Note
the surrounding max{0, ·}: By double-counting these
elements only optionally (that is, only when the sum is
increased (for the upper bound) or decreased (for the
lower bound)) we implicitly cover all cases with a larger
scaling factor than wmin.

To bound sxy we use an upper and lower envelope
(as with LBKeogh, cf. Sect. 2), that depends on the
possible range of index assignments: An index i of series
x is assigned under any of the considered mappings
to an index j ∈ Ai with the set of admissible indices
Ai = [fsp+ i ·(fep−fsp)/n, (tsp+ i ·(tep− tsp)/n]. (We
compute li and ui by iterating once through i = 1..n
and keep all yj with j ∈ Ai in a sorted data structure
from which we can easily obtain the minimal value
li = minj∈Ai

yj and maximal value ui = maxj∈Ai
yj .)

The upper and lower bound of
∑
xiyj are then obtained

from lxy =
∑

min{xi · li, xi · ui} and uxy =
∑

max{xi ·
li, xi · ui}.2

2Note that we obtain a lower and upper bound from the
envelope directly, but the proposed way provides a tighter bound.

These bounds apply for the general case ΩR = R2.
Tighter bounds can be derived for other ΩR, which we
omit due to lack of space.

As already mentioned, the intention is to skip
calculations by the naive algorithm whenever the lower
bound indicates that we will not arrive at a distance
smaller than a certain threshold τ . Note that Corollary
5.2 provides a bound for arbitrary index ranges [fsp, tsp]
and [fep, tep], which offers the possibility to subdivide
the index range subsequently to find tighter bounds for
parts of the search space ΩT .

6 Experimental Evaluation

All experiments are reproducible: the datasets are
publicly available or can be obtained from http://

public.ostfalia.de/~hoeppnef/ltd.html.

6.1 UCR time series As already mentioned, it is
somewhat surprising that the conceptually simple linear
transformations were not appropriately considered in
the literature on time series comparison in the past
(cf. [5]). We close this gap by providing results on the
most frequently used collection of time series [8]. We
closely follow the experimental design of the exhaustive
study in [3] by merging and shuffling the provided test
and train datasets and performing a stratified cross-
validation on 1-NN classification. (We use only the first
batch of time series, because the second batch contains
very large datasets that took 20 multi-cores over a
month of computing power [3].) We report averaged
classification rates on the same number of folds as in [3].
In this section we consider LTD using ΩR = R≥0 × R
and use δ = 0.9 for ΩT throughout all experiments (no
parameter tuning took place). The goal was simply
to compensate for minor translational and dilational
variations.

We want to compare the influence of different
degrees of time warping flexibility. In that respect,
ED and DTW represent two extrema in the spectrum
of temporal transformations: while Euclidean distance
deals neither with dilation nor translation, dynamic
time warping supports any possible warping path (and
is assumed to be the best measure on average in [11]).
We expected LTD to settle down somewhere half way
between both measures.

Table 2 gives the results. In the literature uniform
scaling has been reported to perform superior for certain
types of datasets [6, 7, 4] but to our surprise, LTD
performs consistently comparable to DTW (and in some
cases clearly better. Only with the synthetic control
charts DTW seems better, but we will comment on this
case at the end of the next subsection.) If LTD is at least
as good as DTW, the model with the fewest assumptions

ED DTW LTD

50words 5 0.58|0.01 0.61|0.01 0.62|0.01

Adiac 5 0.52|0.04 0.52|0.02 0.53|0.02

Beef 2 0.42|0.02 0.42|0.02 0.42|0.02
CBF 16 0.93|0.02 1.00|0.00 0.99|0.01

Coffee 2 0.88|0.03 0.86|0.05 0.98|0.03
ECG200 5 0.85|0.03 0.78|0.01 0.85|0.02
FaceFour 5 0.81|0.02 0.87|0.06 0.84|0.04

FISH 5 0.73|0.02 0.67|0.03 0.77|0.01
GunPoint 5 0.88|0.02 0.87|0.05 0.99|0.01
Lighting2 5 0.68|0.06 0.80|0.01 0.80|0.04

Lighting7 2 0.64|0.05 0.71|0.05 0.66|0.08
OliveOil 2 0.85|0.02 0.85|0.07 0.90|0.01
OSULeaf 5 0.52|0.03 0.58|0.04 0.57|0.03

SwedishLeaf 5 0.70|0.02 0.74|0.03 0.73|0.02
synth.control 5 0.86|0.01 0.98|0.00 0.91|0.00

Trace 5 0.66|0.03 0.99|0.01 0.99|0.01

TwoPatterns 5 0.67|0.01 1.00|0.00 0.99|0.00

Table 2: Mean accuracy and standard deviation of
cross-validated 1NN-classifier (no. of folds in column #).

should be selected (Occam’s Razor), that is, LTD.

6.2 Gain from Stiffness To provide insights into
the performance of the similarity measures (rather
than just 1-NN classification rates), we investigate
the spread in the obtained distance values. Fig. 4
shows a histogram of the differences between the closest
distances of the nearest series from a different and the
same class. Positive differences indicate that a series of
the same class is closest and thus the 1-NN prediction is
correct. In the datasets shown DTW and LTD perform
comparable, but one can see that LTD provides a wider
spread for the distance values. This is due to the
stiffness of LTD, whereas DTW can arbitrarily warp the
temporal domain to compensate for deviations in the
amplitude. If we interpret the difference of distances as
a kind of confidence in the prediction, LTD is on average
more confident than DTW.

x$V2 − x$V1

−100 −50 0 50 100

0
40

80

DTW

−200 −100 0 100 200

0
40

80 LTD x$V2 − x$V1

−60 −40 −20 0 20 40 60

0
30

00
70

00

DTW

−60 −40 −20 0 20 40 60

0
15

00

LTD

Figure 4: FaceFour (left) and CBF (right).

Next, we demonstrate that the high flexibility of
DTW may actually be harmful. To underline the
practical relevance, we provide two artificial examples
that are motivated by experiences we made with real
data. Both cases consists of 100 cases (of length 100)

from two equiprobable classes. One may think of
the different classes as a regular machine run (green
example in Fig. 5) and a defective run (red example),
where some moving part of a machine was slowed down
or got stuck for a certain period of time. (The red
and green examples are shifted for better visibility.)
The goal is to distinguish both cases from each other.
We have generated two versions of both datasets, in
the first the series are already aligned (no variation
in offset, only moderately different temporal scaling),
the other additionally contains some variation in the
starting point (temporal offset). Ten examples from the
(aligned) datasets are also shown in Fig. 5 (black).

0 20 40 60 80 100

0
1

2
3

0 20 40 60 80 100

−
1

0
1

2

x$V2 − x$V1

−20 −10 0 10 20

0
20

0
50

0

DTW

−3 −2 −1 0 1 2 3

0
20

0
40

0

LTD x$V2 − x$V1

−5 0 5

0
20

0
40

0

DTW

−4 −2 0 2 4
0

15
0

30
0

LTD

Figure 5: Two example datasets (left: jam, right:
warp).

Table 3 shows the results on both datasets for a 10-
fold cross-validation that was carried out in the same
way as in the previous section. Especially in case of
the warp dataset it becomes very difficult to distinguish
the series visually, because the local distortion is quite
small and superimposed by different scaling factors. For
the aligned case, Euclidean distance does a better job
than DTW. For the additional temporal offset, ED and
DTW perform only a little better than guessing.

Figure 5 also shows the same type of histograms as
Fig. 4. In both cases, the restricted warping capabilities
of LTD allow for a finer distinction between the series.
The warping flexibility of DTW is (mis-) used as a build-
in smoothing filter, as illustrated in Fig. 6. The red
series contains a bump (similar to jam dataset) which
is important to distinguish series from the blue class
(straight line). Then, under the warping path on the
right of Fig. 6, both series become identical. DTW
smoothes the bump away by time warping (and as this

set # ED DTW LTD

JAM 10 0.83± 0.08 0.74± 0.08 1.00± 0.00

WARP 10 0.76± 0.08 0.53± 0.05 0.99± 0.03

JAM2 10 0.67± 0.07 0.62± 0.05 0.91± 0.07
WARP2 10 0.56± 0.06 0.49± 0.05 0.94± 0.05

Table 3: Cross-validated mean accuracy (and standard
deviation) for Euclidean (ED), DTW and LTD distance.
JAM/WARP as in Fig. 5, JAM2/WARP2 with addi-
tional random offset.

is a local effect, constrained DTW will do so as well).
This smoothing capability may be considered as a nice
feature (and may be the reason why no smoothing is
usually applied when comparing time series measures),
but as it is implicitly contained in DTW we cannot
control it very well. Explicitly smoothing the series
and sticking to a linear temporal transformation may be
considered as a more principled approach. Applying a
smoothing filter may increase LTD performance (rising
the results for synthetic control to 0.95± 0.01).

6.3 Normalization It is common practice to nor-
malize time series before applying the distance measure.
With LTD this normalization is embedded into the re-
gression distance, which has the advantage that we can
switch between different kinds of normalization without
re-running the preprocessing and that we open grounds
for notions of similarity that are not accessible by z-
normalization.

As a first example, we use a real-world meteorolog-
ical dataset, where the wind strength is used to label
air pressure time series: the class information indicates
whether the subsequent hours are calm our stormy. In
the first experiment we normalized the time series and
applied 1-NN classification. Then we repeated the ex-
periments on the raw data and Table 4 shows the change
in accuracy. While there is an improvement with all
measures, the improvement is three times larger when
only shift or only scale is considered. The explanation is
simple: the absolute increase of the air pressure curve is

0 20 40 60 80

0
20

40
60

0 20 40 60 80

0
20

40
60

80

u

zero distance warping path

Figure 6: DTW explains bumps away by warping:
Under the warping path (right) the blue and red series
become identical.

ED DTW LTD

R× R R+ × R R× {0} {1} × R
0.03 0.03 0.03 0.02 0.11 0.09

Table 4: Average improvement in mean accuracy (of 10-
fold cross-validation) when skipping z-normalization of
the weather dataset. The four rightmost columns show
results for LTD with ΩR shown in the column header.

a good indicator for upcoming storm, the absolute value
(measured in mbar), however, is not important. After
normalization, the original slope of, say, a moderately
increasing and steeply increasing air pressure curve is no
longer distinguishable for the distance measure. When
amplitude shift and scaling is allowed, we obtain similar
results as with z-normalization. But if we forbid scaling
(column ΩR = {1}×R) two air pressure curves have to
be close in their original slope to match well.

We use the CinC ECG torso dataset from the UCR
repository as a second example. This is a real-world
dataset where ECG data was measured at multiple po-
sition of the torso. The data is not perfectly aligned and
additionally, depending on where the series was mea-
sured, the peaks of the series may be inverted. While
under z-normalization inverted series are dissimilar they
become similar under regression distance with a possi-
bly negative scaling factor. If the train dataset, how-
ever, contains many examples (normal and inverted),
even ED does a good job because it just picks the cor-
rectly scaled example from the training set. There-
fore, we took only the first 200 examples from the test
set plus the 40 examples from the training set (240 in
total) and again performed a stratified 30-fold cross-
validation. That is, the training sets consist only of
240
30 = 8 examples (per fold), only 2 from each class.

Table 5 shows a superior performance of LTD with
ΩR = R2.

set # ED DTW LTD

CinC torso 30 0.59± 0.07 0.64± 0.03 0.73± 0.04

Table 5: Cross-validated mean accuracy (and standard
deviation) for Euclidean (ED), DTW and LTD for 30-
fold cross-validation on 240 CinC samples.

Remember that such notions of similarity cannot be
achieved by ED/DTW on preprocessed data, because
the actual distance depends on the pair of compared
series (while preprocessing operates on single series).

6.4 Lower Bounding The effectiveness of lower
bounding obviously depends on the dataset, that is, the
time series (the inherent pruning power [4]) and the or-
der in which they are processed. The earlier we find a

c sb t
5 97% 39%

10 91% 21%
20 83% 26%
all 64% 36%

x$V1

−200 0 200 400

0e
+

00
8e

+
05

x$V2

−200 0 200 400

0e
+

00
4e

+
05

−200 0 200 400

0
80

00
00

Table 6: Effect of pruning. Left: block size (c), skipped
blocks (sb), runtime (t) relative to naive algorithm.
Right: Histogram of distances (top), lower bounds
(mid), delta between distance and lower bound.

close pair, the more we benefit from lower bounds. In
[11] various suggestions were made to find a good guess
heuristically. We tested many datasets, but discuss only
results on the 50words dataset. Table 6 presents the re-
sults for a 2-fold cross-validation without any of these
optimizations only. The length of a series is 270, with
δ = 0.9 we consider a starting point in [1,27] and end-
point in [243,270]. We can see from the last line of
Table 6 that 64% of the cases were pruned if just one
lower bound is calculated. For the other lines, Corol-
lary 5.2 was used to subdivide the range of possible
start/end points in chunks of a certain size (given in
first column). That is, for a chunk size of c = 10,
we calculate lower bounds for blocks of starting-points
([0, 10[, [10, 20[, [20, 30]) combined with blocks of end-
points ([243, 253[, [253, 263[, [263, 270]). (Alternatively,
a recursive bi-partitioning may be applied.) While the
calculation of the lower bound is O(n log n), the naive
algorithm used to find the best start/endpoint combi-
nation per block is O(c2 · n). Therefore we can trade
lower bound calculations against naive calculations (per
block). In case of a block size of c = 10 the best trade-off
is achieved in this example.

7 Conclusions

From the obtained results we draw the following con-
clusion. First, regarding time warping, it seems that
the higher flexibility of DTW is seldomly needed. It
may even be harmful because DTW has some built-in
noise cancelling that is always applied – whether it is
helpful or not (cf. 6.2). Applying a smoothing filter
separately and stick to linear transformations might be
a more principled approach.

Second, the regression approach with positive scal-
ing factor behaves comparable to z-normalization, but
regression offers several variations (e.g. negative scal-
ing factor) that can give an advantage in specific ap-
plications (unachievable by preprocessing). Switching
between these variations is easy and, more importantly,

subsequent steps (the proposed bounding) can also cope
with the variations. Probably none of these variations
beat the default case with positive scaling factor over
a broad range of data sets, but we connected proper-
ties of the application with the properties of the used
regression model and therefore the choice can be driven
by background knowledge about the application.

Third, although the concept of LTD is simple,
its calculation takes some time. But after a rough
alignment only limited dilational or translational effects
are to be expected. The presented lower bound, that
covers amplitude and time transformations, greatly
helps to reduce the computational effort further.

References

[1] T. Argyros and C. Ermopoulos. Efficient subsequence
matching in time series databases under time and
amplitude transformations. In IEEE Data Mining,
pages 481–484. IEEE Comput. Soc, 2003.

[2] D. J. Berndt and J. Clifford. Finding Patterns in
Time Series: A Dynamic Programming Approach. In
Advances in Knowledge Discovery and Data Mining,
pages 229–248. MITP, 1996.

[3] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
and E. Keogh. Querying and mining of time series
data: experimental comparison of representations and
distance measures. In Proc. VLDB Endow., volume 1,
pages 1542–1552, Aug. 2008.

[4] A. W.-C. Fu, E. Keogh, L. Y. H. Lau, C. A. Ratanama-
hatana, and R. C.-W. Wong. Scaling and time warping
in time series querying. The VLDB Journal, 17(4):899–
921, Mar. 2007.

[5] B. Hu, Y. Chen, and E. Keogh. Time Series Classifica-
tion under More Realistic Assumptions. In SIAM Int.
Conf. Data Mining, number 1, pages 578–586, 2013.

[6] E. Keogh. Efficiently Finding Arbitrarily Scaled Pat-
terns in Massive Time Series Databases. In Knowledge
Discovery in Databases (PKDD), pages 253–265, 2003.

[7] E. Keogh and T. Palpanas. Indexing large human-
motion databases. In Proc. Int. Conf. Very Large
Databases, pages 780–791, 2004.

[8] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei,
and C. A. Ratanamahatana. The UCR Time Series
Classification/Clustering Homepage, 2011.

[9] J. Listgarten, R. M. Neal, S. T. Roweis, and A. Emili.
Multiple Alignment of Continuous Time Series. In
Advances in Neural Information Processing Systems,
2004.

[10] C. G. Nevill-Manning and I. W. Witten. Identifying
Hierarchical Structure in Sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7:67–82, Sept. 1997.

[11] T. Rakthanmanon, B. Campana, A. Mueen,
G. Batista, B. Westover, Q. Zhu, J. Zakaria, and
E. Keogh. Searching and mining trillions of time series
subsequences under dynamic time warping. SIGKDD
Knowledge Discovery and Data Mining, page 262,
2012.

