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Abstract. When seeking for small clusters it is very intricate to dis-
tinguish between incidental agglomeration of noisy points and true lo-
cal patterns. We present the PAMALOC algorithm that addresses this
problem by exploiting temporal information which is contained in most
business data sets. The algorithm enables the detection of local patterns
in noisy data sets more reliable compared to the case when the temporal
information is ignored. This is achieved by making use of the fact that
noise does not reproduce its incidental structure but even small patterns
do. In particular, we developed a method to track clusters over time
based on an optimal match of data partitions between time periods.

1 Introduction

Clustering is the partitioning of data into groups such that similar data objects
belong to the same and dissimilar objects to different groups (according to some
similarity measure). In this paper, we focus on one important topic in clustering:
how to reliably detect small clusters in the presence of heavy noise.

We are particularly interested in so-called local patterns rather than the global
structure of the data, because (a) the global structure is much better known by
domain experts and thus not considered as interesting and (b) small structures
may indicate niches or upcoming trends and as such are potentially of high value
to businesses. Two difficulties are connected with local pattern discovery: Firstly,
within the multitude of local patterns discovered most prove to be uninteresting
(since in line with the global structure) or incidental on closer inspection (cf.
[1]). Secondly, local patterns are easily obscured by noise. In particular, cluster
algorithms often fail in discovering small clusters in noisy domains since they
aim at the detection of large and well separated clusters.

In our approach, we divide up the data (based on time stamps) into several
slices and analyze the data of consecutive slices. This idea and its consequences
are discussed in Section 2 and the clustering algorithm we are going to use (mod-
ified OPTICS [2]) in Section 3. By matching clusters in consecutive partitions,
a cluster history is obtained (cf. Sec. 4). We exploit this historical information
to distinguish incidental from substantial small clusters (Sec. 5). Finally, some
results are shown in Section 6.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 479–486, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Related Work. Clustering in the presence of time-stamped and changing data
has been studied in the context of moving cluster detection and data streams.
Although it is possible to track the change of clusters with our proposed algo-
rithm, we will focus on the detection of local patterns here only. In contrast to
most stream mining approaches [3,4] we do not keep a condensed representation
of the data stream in main memory, but analyze subsequent parts of the stream
one after another. The algorithm we propose is not an online algorithm.

We will compare the partitions obtained from data of consecutive time pe-
riods, therefore clustering ensembles is also a related area. In the clustering
ensembles literature, however, the partitions are usually obtained from identical
data sets but different clustering algorithms, e.g. [5], or from the same algorithm
using different subsamples of the original data set, e.g. [6]. In this paper, how-
ever, we compare partitions obtained at different points in time in order to gain
information about the temporal stability of a cluster.

Brief Review of OPTICS. Since we are going to use the OPTICS algorithm
we want to briefly review it here. OPTICS [2] is a density-based approach, which
means that for a data point x to belong to a cluster, the density around x must
exceed some density threshold �. The density � is given implicitly by the size
of a hypersphere with radius ε (defining the neighborhood Nε(x) of volume
Vε) and a required number MinPts of data objects within this neighborhood.
The condition for x to establish a cluster is |Nε(x)| ≥ MinPts. In terms of
density this is equivalent to |Nε(x)|

Vε
≥ MinPts

Vε
=: �. OPTICS requires only the

parameter MinPts and an upper bound for the neighborhood size. The outcome
of the algorithm is an ordering of all data points together with a reachability
distance for each data point (cf. Fig. 2). Simplifying, the reachability distance of
x is the smallest neighborhood radius ε such that x belongs to a cluster. In the
reachability plot all data objects are ordered on the horizontal axis with their
reachability distance on the vertical axis, such that consecutive data objects in
the plot having all their reachability distances below some given threshold belong
to the same cluster at the corresponding density level.

2 Selection of the Clustering Algorithm

We start by dividing our existing data into slices Si of approximately the same
size and consider the sequence of partitions obtained from clustering a window
of n consecutive slices. By comparing the clusters of consecutive partitions we
trace the clusters over time and thereby also measure their stability. The rough
sketch of our proposed PAMALOC algorithm (partition matching to detect
local clusters) is shown in Fig. 1. The data does not have to be timestamped,
but all data in Si should have been observed before the data in any Sj , j > i.

Given this coarse idea of how to attack the problem, we may use a variety of
clustering algorithms in line 2 and 6. They should, however, meet at least the
following four requirements:

• Flexibility. The notion of a cluster supported by the clustering algorithm
must be flexible in order to cope with any arbitrary cluster shape. This rules out
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INPUT: t time interval, n number of slices to use, St data slice collected during t

Set t = n 1
Run clustering algorithm with slices St−n+1 ∪ St−n+2 ∪ ... ∪ St 2
Extract clusters, denote the set of clusters (partition) by P t = {Ct

1, C
t
2, ..} 3

While there is another data slice St+1 available { 4
t=t+1 5
Run clustering algorithm with slices St−n+1 ∪ St−n+2 ∪ ... ∪ St 6
Extract clusters, denote the set of clusters (partition) by P t = {Ct

1, C
t
2, ..} 7

Match clusters in P t to those in P t−1 8
Evaluate the stability of the cluster in the cluster’s history} 9

OUTPUT: partition of stable clusters

Fig. 1. Sketch of the proposed PAMALOC algorithm

all clustering algorithms that assume a certain model for a cluster (e.g. k-Means,
mixture of Gaussians).

• Robustness wrt. parameters. At the time of setting up the algorithm, we
do not know what clusters will show up in the future. So we cannot tailor our
parameters to a ’representative dataset’, but it must work with a wide range of
noise and cluster densities.

• Stability wrt. input data. The algorithm should be as stable as possible
(similar input should lead to similar output). This is important since we want to
trace and compare clusters obtained from different runs of the algorithm. Lack of
stability might be caused by iterative optimization, where a different initializa-
tion may already lead to a different partition (k-means and derivatives, mixture
of Gaussians), or by the choice of the distance measure (in hierarchical clustering
with single-linkage a single new data object may have dramatic effects).

There is probably no truly optimal choice, but the OPTICS algorithm [2] is at
least considered being a very good candidate. The cluster’s shape is highly flex-
ible due to the concept of density-connected regions, that is, clusters are made
up by data points close to each other with their individual data point density
exceeding some threshold. Regarding robustness, the MinPts parameter of the
OPTICS algorithm can be used to control the robustness of the results: With
MinPts=2 small perturbations may have large effects on the connectivity (simi-
lar to single-linkage clustering), but by increasing MinPts the response to small
changes is reduced. Regarding stability, as long as the clusters are clearly sepa-
rated and the noise level is low, the clusters exhibit themselves quite prominently
in the reachability plot and OPTICS produces stable results.

However, stability becomes a major problem if the noise level increases. The
top right image in Fig. 2 shows an artificial example consisting of about 500
uniformly distributed noise objects and about 200 data objects that belong to
artificially superimposed clusters. It is really hard to tell whether some of the
data agglomerations are small but substantial local patterns or just occurred by
chance. At this noise level the random noise points lump together into spurious
clusters (e.g. shaded region in the image). If we now remove some data and add
some other (replace oldest with a new data slice) this will cause considerable
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changes in the shape of the incidental data agglomerations we see in this figure
– but to a lesser extent to the shape of true clusters. The main idea for the dis-
tinction between (small local) patterns and agglomeration by chance is therefore
the stability of a cluster, i.e. whether the cluster reappears in the next iteration.
Even if the random points spontaneously agglomerate, it is very unlikely that
this happens in the same way over multiple analyses. The longer an agglomera-
tion – even if it is of low density – remains stable over time, the more likely it is
that we observe some true pattern in the data.
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Fig. 2. The outcome of the OPTICS algorithm (reachability plot, bottom line) for the
clean and a noisy data set

But still, the procedure in Fig. 1 requires that we come up with some clusters.
As we have argued, we cannot be sure about the partition, so we are condemned
to make errors. This imposes a fourth requirement:

• Ability to preserve ambiguity in the partition. Ambiguity in the partition
can help in the sense, that we can consider more cluster candidates than ac-
tually expected clusters. We keep several possible clusters under consideration
to be able to defer the decision making, whether a data agglomeration is inci-
dental or significant, to a later point in time. Ambiguity can be achieved, for
instance, by means of a hierarchical clustering (which is ambiguous in the sense
that a particular data object may belong to several clusters). Since we can not
think of a clustering algorithm that is capable of detecting local patterns with-
out having to discover more global structure first (for a discussion see [7]), it
seems that generally hierarchical approaches are better suited than partitional
approaches.
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3 Extraction of Clusters

OPTICS finds an ordering of the data objects such that the reachability plot
has the following property: consecutive data objects in the plot having all their
reachability distances below some given threshold ε belong to the same clus-
ter (at density level MinPts

Vε
). Therefore, clusters are represented by valleys in

the reachability plot and some user-specified thresholds on the steepness of the
flanks of the valleys are used in [2] to decide whether a valley qualifies as a
deep valley and thus as a cluster. Fixing such thresholds is easy, if the cluster
density differs clearly from the background density. However, with noisy data
and comparatively small clusters of non-uniform density, clusters do not show
up that clearly in the reachability plot and fixing the thresholds is difficult if at
all possible (cf. Fig. 2, left vs. right).

We therefore propose a different approach that still uses the reachability plot
as its basis. If we draw a straight line in this plot, we thereby mark a certain data
density level. In practice we are only interested in subclusters with significantly
increased density, say, a factor of fd higher. The same is true for the subcluster of
a subcluster. Thus we set up a cascade of density levels (given by �i = �0 ·fd

i with
initial density �0 and levels i = 1...L) and whenever the density of some subset of
the data drops below such a density level we consider it as a cluster candidate. To
depict the cluster candidates we draw a rectangle in the graphical representation
(cf. Fig. 3) whenever this happens. A deep valley in the reachability plot will
cross multiple lines and therefore indicate hierarchically nested rectangles in
Fig. 3. By considering all these sets as cluster candidates, we tolerate for the
moment that many of them may be incidental.

Given a data density �i, how can we match it to a vertical line in the reach-
ability plot? Within a cluster, the reachability of a data point x corresponds
to the core distance of x, which is the smallest distance such that MinPts data
objects can be found in a hypersphere of this radius around x. Given the volume
V of the hypersphere (V =

√
πd

Γ (d/2)ε
d where Γ denotes the Gamma function) we

may estimate the density at x by � = MinPts/V . Using this equation we can
transform our sequence of densities into a sequence of hypersphere radii.
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Fig. 3. Top: Reachability plot with density lines. Bottom: Whenever the reachability
drops below a density line, a new cluster candidate (shown as a rectangle) is induced
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4 Matching of Clusters

Once we have two hierarchies of clusters we match the clusters against each
other to see if a cluster survives over time. As the rationale for this matching we
need some measure that indicates for each pair of clusters (one cluster candidate
from the old, one from the new hierarchy) whether it would be a good match or
not. When both partitions were obtained from two completely different data sets
(and the clusters cannot be represented by some model) such a match becomes
somewhat difficult, because we have no means to compare the clusters directly
against each other. Therefore we perform clustering on more than one data slice
per clustering, such that data from some slices are contained in both clusterings.

Figure 4 illustrates this: For every cluster analysis we use a data set that con-
sists of n data slices. Then, between any two consecutive runs, we have a common
basis of n − 1 slices for matching. Given clusters Ct−1

i and Ct
j from consecutive

data sets Dt−1 and Dt, we adopt the Jaccard measure for this purpose:

Ji,j =
|Ct−1

i ∩ Ct
j |

|(Ct−1
i ∪ Ct

j)\(St ∪ St−n)|

Ji,j becomes 1 if both, old and new cluster, contain the same data objects in the
shared part of their dataset. We have to exclude the set St ∪St−n from the usual
Jaccard denominator, because this set does not contain shared data objects.

slice 1 slice 2

slice 2

slice 3

slice 3

slice 3

slice 4

slice 4

slice 4

slice 5
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slice 5

slice 6

slice 6 slice 7

data set 1

data set 2

data set 3
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Fig. 4. Data slices used for clustering

cluster candidates at time t cluster candidates at time t +1

Fig. 5. Matching of rectangles in two hi-
erarchies

We construct a |P t−1| × |P t| cost matrix M with Mi,j = 1 − Ji,j . To match
the clusters pairwise, we use the bipartite graph matching algorithm by Munkres
(also known as the Hungarian algorithm) [8]. We accept an assignment of two
clusters only in case they share at least some percentage pm of the data, otherwise
most of the data has obviously been scattered among other clusters and the
original cluster does no longer exist. We have selected a relatively low value of
pm = 30% to account for effects such as shrinking or varying noise levels.

5 Evaluating the Stability

Whenever a new data slice arrives, we perform a new cluster analysis, extract new
clusters and match them with the old ones. To find good clusters, usually cluster
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validity measures are employed that account for the compactness or separation
of clusters (or, in case of OPTICS, the steepness of the flanks). In the presence of
much noise, these measures tend to break down. We do not want to investigate
clusters that are likely to vanish in the next period of time, that is, have a very
short lifetime. By lifetime of a cluster we denote the number of data sets over
which a cluster survives. Whenever a cluster is successfully matched into the
next hierarchy, its lifetime is increased.

But not all matched clusters are matched equally well. The Jaccard measure
tells us precisely how much data is shared between the old and the new cluster.
Rather than requiring, e.g., three matches in a row, we may directly aggregate the
matching values in the most recent r periods to a single stability value. If a cluster
has been matched several times, each time with a matching value of mi, we define
its stability as: St =

∑r
i=0 βi·mi. We choose βi heuristically such that St becomes

a weighted average. Since recent matches are more important than matches in
the past, we use normalized coefficients from a Gaussian (βi = exp(−i2/r2)
normalized to

∑r
i=1 βi = 1). The best stability value is 1.0 for a cluster that has

been matched r times in the past with a Jaccard measure of 1.0. For a cluster
to be stable at t, we require St > 0.5. Note that this measure does not explicitly
account for the size or density of the cluster, and thus represents no bias towards
large and dense clusters (which is important for the discovery of local patterns).

6 Example and Conclusion

Due to lack of space, we discuss the performance of PAMALOC for an artificial
data set. We consider a sequence of 11 data slices St with t = 0...10. Every
slice contains up to four (normally distributed) moving clusters, two of them
are moving (at different speed) and the others (denoted by A and D) are static.
The size of the clusters is also varying: The moving clusters are expanding and
shrinking, respectively (by 5 data points per time step t). Cluster D will appear
at t = 7 for the first time and its initial size is 13; with every time step t its
size will increase by 3 data points. Cluster A is a very small one, it consists of 4
data points per time slice only. In the final slice (t = 10) the clusters consist of
about 250 data points in total. We add 500 uniformly distributed data points,
such that we have at least twice as much noise as substantial data (cf. Figure 2
(right) for the first data slice). In particular, cluster A, which consists of 4 data
points per slice only, is impossible to detect in the right image.

Using five time slices for each OPTICS run, PAMALOC reaches the last time
slice (t = 10) after 6 iterations, but only the last iteration is shown in Fig.
6 (MinPts = 3, fd = 1.3). The stable clusters (St > 0.5) have been shaded:
the darker the rectangle the more stable the cluster. Compared to experiments
with less noise (not shown) two observations can be made: (1) due to the high
noise level, the whole data set is density-connected for the first 5-6 data density
levels and (2) we have more ’small clusters’ (small rectangles), which is due
to spontaneous data agglomerations in the noise. Most of these agglomerations
vary from time slice to time slice that much, that they do not become stable.
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Fig. 6. Final hierarchy for example 2 (67 % noise)

At the final hierarchy only very few of these small rectangles are stable with the
rectangles belonging to cluster A being the most stable among them. Cluster
D is also difficult to detect, because its initial small size (t = 7) must compete
against all the noise around it. Nevertheless, in the final hierarchy of Fig. 6 it
has been recognized as a stable cluster (light shaded rectangle).

Conclusion. We have presented the PAMALOC algorithm for detecting small
patterns in very noisy data. Our initial experiments show, that even in cases
where we have much more noise than substantial data points, we are capable of
identifying very small local patterns. We consider the fact that only a very small
number of false positives were flagged as very encouraging.
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