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Abstract. We consider the problem of knowledge induction from se-
quential or temporal data. Patterns and rules in such data can be de-
tected using methods adopted from association rule mining. The result-
ing set of rules is usually too large to be inspected manually. We show
that (amongst other reasons) the inadequacy of the pattern space is of-
ten responsible for many of these patterns: If the true relationship in
the data is fragmented by the pattern space, it cannot show up as a
peak of high pattern density, but the data is divided among many differ-
ent patterns, often difficult to distinguish from incidential patterns. To
overcome this fragmentation, we identify core patterns that are shared
among specialized patterns. The core patterns are then generalized by
selecting a subset of specialized patterns and combining them disjunc-
tively. The generalized patterns can be used to reduce the size of the set
of patterns. We show some experiments for the case of labeled interval
sequences, where patterns consist of a set of labeled intervals and their
temporal relationships expressed via Allen’s interval logic.

1 Introduction

Although we will concentrate on (a special kind of) sequential data later, the
problem that will be discussed in this paper is well-known wherever association
rule mining techniques are applied. Association rule discovery [1] yields large sets
of rules “if A then B with probability p”, where A and B are patterns from an
application-specific pattern space. For instance, in market basket analysis, the
pattern space consists of all sets of items that can be purchased in a supermarket.
Association rules are considered as potentially useful for knowledge discovery
purposes since rules are easily understood by humans.

One problem with all these techniques (regardless whether they are applied
to itemsets [1], event sequences [12], calendar patterns [11], or interval sequences
[7]) is the size of the rule set, which is often too big to be scanned and evaluated
manually. Usually, an expert of the field has to think over every rule carefully to
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decide whether the discovered correlation is incidential, well-known, or indicates
something potentially new. Providing too many rules to the expert overcharges
him quickly — and thus limits the usefulness of rule mining for knowledge dis-
covery.

Why are there so many rules? The rules are generated from a set of pat-
terns (in some pattern space P) that occur more often than a certain threshold,
which is why they are called frequent patterns. (The number of occurrences
of a pattern is denoted as the support of a pattern.) Given a subpattern re-
lationship C for patterns in P, for any two frequent patterns A and B with
A C B arule A — B can be generated. It is interpeted as “whenever we observe
pattern A we will also observe pattern B with probability p”. For instance, if
the pattern space consists of sets of ingredients of recipes, from a frequent pat-
tern B = {water, flour, sugar, salt, eggs} any subset A can be chosen to derive
arule A — B, e.g. {water,flour} — {water,flour,eggs} (often abbreviated as
“water, flour — eggs”). Obviously, the number of rules can be even much larger
than the large set of frequent patterns. Besides those patterns that are found
due to true dependencies in the data (those we want to discover), incidential
co-occurrences (that appear more often than the minimum support threshold)
also introduce many frequent patterns (and rules).

One can find many approaches in the literature to reduce the number of rules
and patterns, e.g. by concentrating on maximal patterns [2], by restricting to
closed patterns [13], or by incorporating additional user information [10].

Besides that, other extensions of association rule mining have been proposed:
For the case of market basket data, product hierarchies or taxonomies have
been suggested to generalize items “orange juice”, “apple juice”, “cherry juice”
simply to “juice” in order to obtain stronger rules. Not the granularity of the
data as a whole is addressed: It may be appropriate to distinguish the different
kinds of juices for some associations, while it may be better to generalize juices
in others. These problems have been solved by introducing a priori knowledge
about the product taxonomy [15, 5]. But we cannot be sure that our taxonomy
contains all useful generalizations: Do we want to consider “tomato juice® in
our is-a hierarchy as a “juice” or introduce another level to distinguish between
vegetables and fruit juices?

Well, what is the relation to the problem of large rule sets? The product
hierarchies seem to address a completely different phenomenon at first glance. On
second thought, the stronger generalized juice rules make a number of specialized
orange/apple/cherry juice rules obsolete. In absence of the juice generalization
we have a number of only moderately strong rules and miss the strong “true
relationship” in the data due to an inadequacy or incompleteness of the pattern
space. It would be possible to learn the generalized terms automatically, if our
pattern space would allow not only simple rules

ADE — FG@, CDE — FQ@, BDE — FH, (1)
but also disjunctive combinations like

(AVBVC)DE — F(GV H) 2)



If a taxonomy is given, it may happen that (AVBVC) matches a generalized term
in our taxonomy (but this is not guaranteed, of course). If the true association in
the data is given by (2) or negative patterns ” A but no B”, and our pattern space
does not contain such patterns we will observe fragments of the true pattern only
—as in (1). Thus, by calling a pattern space inadequate we want to express that
there may be relationships in the data that are not representable by hypotheses
from the pattern space.

One may want to conclude that the choice of the pattern space should be
thought over, however, the pattern space has usually been chosen after care-
fully balancing its modelling capabilities and computational costs to search it
efficiently. We do not want to put the pattern space in question, because the
consideration of all possible disjunctive combinations would increase the cost of
rule mining dramatically. We consider the question if it is possible to identify
the true patterns by generalization of the fragmented patterns. Specialization
and generalization are considered to be two of the most basic techniques used
by the brain to generate new rules. While the association rule mining process
can be seen as a specialization step (every possible rule is enumerated), a second
phase of generalizing the specialized patterns seems to be worthwhile.

The outline of the paper is as follows. Section 2 will motivate our interest in
labeled interval sequences. To judge wether a rule’s specialization or generaliza-
tion should be considered we use the J-measure, which is discussed in Sect. 3. In
case of sequential data is makes sense to concentrate on meaningful subsequences
in the data (Sect. 4) rather than rules alone. The value of a subsequence will
be given by the value of the rule that can be extracted from the subsequence
(Sect. 5). We think that this approach is advantegous for the expert, since the
number of such sequences will be much smaller and more easy to verify than a
set of rules. We concentrate on an interesting subset of meaningful subsequences
(Sect. 6), which we will use as a basis for generalization (Sect. 7). An example
will be given in Sect. 8.

2 Motivation for Interval Sequences

We are interested in sequential data and more precisely in labeled interval se-
quences. Since such sequences are not widely used, we want to motivate them
briefly and introduce the pattern space we are considering.

We think of labeled interval sequences as a natural generalization of discrete
(static) variables to time-varying domains. If time is not considered explicitly,
an attribute v of an object is simply denoted by a single value z. The value
v = x holds at the time of recording, but not necessarily in the past or future.
Whenever the value of v changes, the time interval of observing v = z is ended
and a new interval v = y starts. If the value of v is unknown at time ¢, then
we have no interval I in the sequel with ¢ € I. The development of the variable
over time (as much as we know about it) is thus characterized by a sequence of
labeled intervals, where the labels denote the variables value  and the interval
denotes a time period I where v(t) = z holds for ¢t € T.



Such interval sequences can be given naturally (medical patient data, insur-
ance contracts, etc.), but may also be obtained from abstracting some other raw
data. For instance, in case of event sequences it may be useful to aggregate sim-
ilar events to intervals of equal event density. Although in the example we have
considered discrete variables only (for continuous variables it is very likely that
the interval width becomes zero), this representation is also extremly useful to
capture high-level descriptions of continuous-valued variables like time series.

In fact, our main concern is the discovery of dependencies in multivariate
time series. Although a complex system is difficult to forecast or model as a
whole, such systems (or subsystems) cycle very often through a number of inter-
nal states that lead to repetitions of certain patterns in the observed variables.
Observing or discovering these patterns may help a human to resolve the un-
derlying causal relationships (if there are any). Rather than trying to explain
the behaviour of the variables globally, we therefore seek for local dependencies
or local patterns that can be observed frequently!. Having found such depen-
dencies, an expert in the field may examine what has been found and judge
about its importance or relevance. Since correlations do not necessarily point
out cause-effect relationships, the final judgement by an expert is very impor-
tant. On the other hand, an expert in the field is not necessarily familiar with
whatever kind of analysis we are going to use, therefore it is important to ob-
tain results that are easily understandable for the domain expert. Therefore we
use artificial (discrete) variables whose values address qualitative aspects of the
slope or curvature of the signal. The big advantage of this conversion to labeled
interval sequences is the fact that this representation corresponds pretty well to
the perception of a time series profile by a human. Humans argue in terms of
shape or visual appearance, which are attributes that are less easily distorted
by noise.

A pattern in our pattern space consist of a set of labeled intervals and their
temporal relationships 7 expressed via Allen’s interval logic (cf. figure 1). Pat-
terns may then describe, for instance, subsequences in multivariate time series
such as “interval air-pressure convex overlaps interval air-pressure increases, both
intervals are contained in an interval wind-strength increases”. The pattern cap-
tures only qualitative aspects of the curves as well as qualitative interval rela-
tionships, they are therefore well-suited to compensate dilation and translation
effects which occur very often in practice (and are difficult to handle in many
other approaches). Formally, given a set of n intervals [b;, f;] with labels s; € S,
a temporal pattern of size n is defined by a pair (s, R), where s : {1,..,n} = S
maps index ¢ to the corresponding interval label, and R € Z"*" denotes the
relationship between [b;, f;] and [b;, f;]. We use the notation |P| to denote the
size of a pattern P (number of intervals). For pattern frequency estimation, we
choose a sliding window W of a certain width that is slid along the sequence.
The support of a pattern is given by integrating the time period in which the

! The term frequently should not be taken too seriously, we refer to patterns that
occur in a certain percentage p of all observations, but p can be as small as 1%, for
example.



pattern is visible. For more details on the pattern space, we refer the interested
reader to [9, §].

A - - -

B -— <7 — > time

B before [b] A -~ A after [a] B
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Fig. 1. Allen’s interval relationships Z (Abbreviations in parantheses).

While the pattern space has very useful properties for our purposes, it still
may be inadequate for observing certain relationships in the data: Consider the
following pattern “signal B starts to increase after any signal but A has started
to increase”. There is no equivalent element in our pattern space that corre-
sponds to this relationship because some qualitative statements about interval
end-points are missing nor can we express a negated term (”any but A”). So we
observe only a number of artefacts (like “C-increase overlaps B-increase” or “C-
increase before B-increase” or “D-increase meets B-increase” etc.), which are
by no means incidential patterns (although they could easily be misclassified as
such): They are specializations of a pattern that is not contained in the pattern
space — and since the support of the true pattern is shared among the artefacts
they cannot show up that clearly as the true pattern would.

3 The rule evaluation measure

Association rule mining techniques enumerate all rules that fulfil a certain min-
imum support and confidence. In a naive approach to generalization we could
do the same, that is, enumerate all generalizations that fulfil these conditions. A
temporal pattern of dimension k has k different labels and & - (k — 1) /2 interval
relationships (the remaining interval relationships can be determined uniquely).
Potentially, we would have to generalize any of these k + k - (k — 1) /2 values for
each pattern. Such a “bottom-up” approach to generalization increases the com-
putational burden significantly and increases the number of rules even further.

Instead, we are interested in reducing the number of rules, that is, apply
generalization to the resulting rule set in order to reduce its size and at the same
time improve its overall value. There are two important properties of a rule, its
specifity or applicability (denoted by the support of the premise pattern) and its
goodness-of-fit or confidence. Generalization of a rule makes it less specific (which
is good, because it can be applied more often) but may reduce the goodness-of-fit
at the same time (which is bad, because the rule holds in fewer cases) — so, has



the rule improved overall or not? This is the difficult question a rule evaluation
measure has to decide. We want the measure to decide whether the rule itself or
its specialization or generalization should be kept in the set of rules — preferably
without a bias towards either the one or the other.

Most of the known heuristic measure for interestingness [6] are not suited for
this purpose, since they assume uniform distributions as a priori probabilities
for patterns. Using such measures, the more we deviate from the uniform dis-
tribution the more interesting we consider the rule. But the various patterns in
our rules are by no means uniformly distributed and thus a ranking provided by
rule measures that do not take more realistic a priori beliefs into account cannot
provide a meaningful ranking.

We are using the information-theoretic J-measure [14], which seems to bal-
ance the goodness-of-fit and simplicity of the rule very well. Given a rule “if
Y = y then X = z” on random variables X and Y, the J-measure compares
the a priori distribution of X with the a posteriori distribution of X given that
Y = y. In the context of a rule, we are only interested in two cases, given that
Y = y, either the rule was right (X = z) or not (X = %), that is, we only
consider the distribution of X over {z,Z}. Then, the relative information

&y =g= Y Pr<X=z|Y=y>1og2(

Pr(X =z2|Y = y))
z€{z,z}

Pr(X =2z)

yields the instantaneous information that ¥ = y provides about X (j is also
known as the Kullbach-Leibler distance or cross-entropy). When applying the
rule multiple times, on average we have the information J(X|Y =y) = Pr(Y =
y) - J(X|Y = y). The value of J is bounded by = 0.53 bit [14]. In the con-
text of temporal patterns in labeled interval sequences we have already obtained
promising results using this measure when specializing the rules with quantita-
tive constraints [8].

We understand rules P — R such that P and R are patterns with P C R
(cf. Sect. 1). As a consequence, the probability of observing the rule pattern R
without observing the premise pattern P is zero, which may appear a bit unusual
when compared to static rules. However, with temporal patterns we want the rule
to resolve the temporal relationships between intervals in premise and conclusion.
Therefore, the conclusion pattern must contain the premise pattern in order to
specify the temporal relationship between premise and conclusion intervals. In a
rule P — R we thus speak of a premise pattern P and a rule pattern R rather
than a conclusion pattern. The J-value of a rule tells us how informative the
premise is w.r.t. an occurrence of the rule pattern.

For the J-value of such rules the following holds: Given a premise P of a rule
P — R. Then among the rules with the highest J-value there is a rule pattern
of size |P| + 1. Given a rule P — R, among the rules P -+ R’ with PC R'C R
and lowest J-values there is R' = R. (Proofs straightforward but omitted due to
space limitations.)



4 Frequent Episodes

We have illustrated in Sect. 2 that we assume repetitions of certain patterns in
the observed time series. One could therefore argue that the discovery of such
repeating patterns (or subsequences) is our main concern, rather than enumer-
ating rules. Indeed, from a single frequent pattern (or sequence) the number
of generated rules increases exponentially with the length of the pattern, thus,
concentrating on the patterns seems to be much less effort. Moreover, the in-
terestingness of a rule depends on the variables it uses: The best-rated rule is
not necessarily most helpful for the expert since it may use unknown variables
in the premise or predict well-known variables. By providing the sequences, an
expert can decide on his own which intervals he wants to have in the premise
and which ones in the conclusion before considering the derived rules.

Although we have less patterns than rules, it is still true that for every k-
pattern we have 2¥ — 1 subpatterns, thus, the number of subpatterns is still
large. Some authors consider only patterns that are maximal, that is, there
is no other frequent pattern that contains it as a subpattern (e.g. [2]). While
this reduces the number of patterns significantly, we obtain for every incidential
occurrence of an interval X in vicinity of a maximal pattern a new maximal
pattern. Such incidential occurrences do not add any information to the maximal
frequent patterns, therefore it seems to be more promising to concentrate on the
maximal patterns among the interesting patterns (without having yet defined
interestingness for sequences).

Which sequences are meaningful? It is safe to assume that not every fre-
quent pattern corresponds to a meaningful repetition of some internal states in
a system. Following an idea by Cohen and Adams [3], a meaningful sequence,
called episode in the following, is characterized by the fact, that the sequence
gets more and more deterministic: At the beginning of an episode, we are not
quite sure what we will observe next, but the more elements of the episode we
have seen, the more we are certain about what kind of episode we are currently
observing and it becomes more easy to predict the next observation. At the end
of an episode we are again uncertain how to continue. In [3] entropy is used to
measure the goodness-of-fit as the sequence develops, thus the end of an episode
is recognized by a increase in the entropy (cf. algorithm in Fig. 2).

This appealing idea seems to be helpful in distinguishing incidential patterns
from meaningful episodes. However, as we have discussed in Sect. 3, a uniform a
priori belief is not very well suited to compare goodness-of-fit values for different
sequences. Cohen and Adams perform some normalization to cope with this. We
simply apply the goodness-of-fit term j of the J-measure for this purpose.

By considering episodes rather than sequences we are more robust against
incidential occurrences of intervals. Since we do not want to consider such inci-
dential patterns during generalizations of rules, we use the set of episodes rather
than the set of frequent sequences for further processing.



5 Evaluating Episodes

We are still lacking an episode evaluation measure. From their definition we
know, that the goodness-of-fit increases as the episode becomes longer. We want
to rate episodes by their suitability to create strong rules out of them, and thus
goodness-of-fit alone is not suited to measure the usefulness of an episode, the
average applicability of a rule is also important (as we have discussed in Sect.
3).

We want to use the J-values for rules that can be obtained from an episode
to rank the episode itself. How many rules can be derived from a k-episode R?
We will use the alternative notation P —g C for a rule P — R with conclusion
pattern C' under rule pattern R for notational convenience. Let us divide R into
a premise P; and conclusion part C;, such that |P;| = 4 and |C;| = |R| —i. There
are |R| — 1 possibilities for this subdivision. Any pair of subsequences (besides
the empty sequence) P’ C P and C' C C will do for a potential rule P’ — C".
We have |P| intervals in the premise and |C| intervals in the conclusion, and
thus for each subdivision (2! —1) - (2! — 1) rules. Which rules shall we use to
rank the episode then?

If we simply use the maximum of all J-values of all rules

Jr = max max Jp_ o 3)

max
ie{l,.,|R|-1} C'CC; P'LP

it impossible to distinguish between different developments of the J-value with an
increasing length of the sequence. Two sequences R and R’ get the same ranking
even if the maximum J-value is obtained for different points of subdivision 3.
But smaller values of ¢ are preferable (given the same J-value), because then a
shorter prefix is necessary to reliably predict the continuation of the sequence.
Therefore, rather than using a single number we use a tuple of |R| — 1 J-values
to rank an episode, such as

J+= (llaX max JPI 1
R n —rC
CC; PCP ,
C'EC = i€{1,..,|R|—1}

(4)
Now, J#[i] denotes the J-value of the best subrule of P; - R. (Note that J3[i]
is not necessarily increasing with 4 as the goodness-of-fit does.)

We are not quite satisfied with this, because a strong relationship between a
short i-prefix of R and the 1-suffix of R would yield consistently high J-values
for all Jg[i'] with ¢’ > 4, because for i’ > i there is always a subrule that contains
the i-prefix in the premise and the 1-suffix in the conclusion. Therefore, our final
choice for the episode evaluation is an (|R| — 1)-tuple such that Jg[i] yields the
minimal J-value that can be obtained from a subpattern of P; for any conclusion
Cl E Cz
()

Jp = ( min max Jpr )
R 7 —rC
CC: PLCPR )
CLC = ie{L,..,|R|-1}



A ranking of episodes can be obtained by sorting the Jz[i] values in de-
creasing order? and comparing the tuples (of varying size for varying length of
the episode) lexicographically. Note that [J5 [i], J3[i]] provides an interval of J-
values in which any rule (with any conclusion C' C C;) and optimized premise
R' C R; will fall.

Fortunately, the calculation of the [Jj;, J;] intervals is log-linear in the num-
ber of frequent episodes and thus can be done efficiently. For every k-pattern
P we store a (k — 1)-vector of J-values Ppinj[-] and Ppaxi[-]- We sort all fre-
quent patterns such that the prefix property is preserved (if P is a prefix of @
then P comes before @, see e.g. [9]). Then we identify episodes from patterns
as described in the previous section by running once through the patterns in
this order. At any time we keep all i-prefixes Q[i] of a k-pattern R and initialize
Rnini[t] = Rmaxi[t] = J(R|Q[i]). The J-vector thus contains the J-values of rule
patterns R that are subdivided into premise and conclusion at position ¢ (cf.
Fig. 2).

1 let F be a sorted list of frequent patterns of size 1 < k < K O(|F|log | F|)
2 for P € F let Ppuyj[-] and Pping[-] be a (|P| — 1)-tuple

3 let @Q be an empty vector of patterns

4 fetch first pattern R € F

5 do O(17D

6  k=|R|; Qk] = R;
7 k<2 V j(Qlk— QM — 2]) < j(RIQk — 1)
8 then
9 append R to £
10 for i =1 to k — 1 do Rpmaxj[i] = Rmins[i] = J(R|Q[]) od
11 fetch next pattern R € F
12 else
13 fetch next pattern R € F until |R| < k
14 fi

15 until all patterns R € F are processed
16 now & is a sorted list of frequent episodes

Fig. 2. Determining episodes among frequent patterns. For every episode R, Rinli]
(and RpaxJ[f]) contains the J-value of the rule that is obtained by subdividing the rule
pattern R into premise and conclusion at position i.

For k = 2 the values Rpinj[1] and Rpmaxs[1] already correspond to Jp[i] and
J#[i], because only a single rule can be derived from a 2-episode. Then, we
iterate over all episodes R of length 3 and generate all 2-subepisodes P obtained
by removing one of the 3 intervals. The R,y and Raxs vectors contain the
J-values for rules that use all intervals in R, from Ppj,y and Ppa.y we obtain the
J-values for rules that use only 2 out of 3 possible intervals. The J-value of the

2 Jg is monotonly increasing with ¢, thus sorting corresponds to reversing the order.



best rule is obtained by taking the respective maximum of J-values. Now, the
J-vectors contain the J-value of the best subrule of R and we continue to process
episodes of size 4 and so forth (cf. Fig. 3). For the R,y values we make use of
the fact that the rule with C' = C; has the smallest J-value (cf. Sect. 3).

1 let £ be a sorted list of frequent episodes of size 1 < k < K
2 for k =3 to K do

3 for Re EA|R| =k do both for-loops together: O(€)
4 fori=1tok—1do
5 let Q T P where the i*? interval of P has been removed
6 ifQeé search in ordered set: O(log &)
7 then
8 for j=1tok—1do
9 if j<kthenjj—k—lelsejj=kf
10 Riaxglj] = max(Rumaxgli]; Qmaxilisl)
11 if ¢ <jJ then RminJ[j] = ma‘X(RminJ[j]: Rmin.][jj]) fi
12 od
13 fi
14 od
15 od
16 od

Fig. 3. Evaluating the J5[i] and J3[i] vectors for episodes.

6 Core Episodes

The J-measure will serve us in ranking the episodes by the average information
content of the rules that we may derive from them. But we are not only interested
in a sequential ranking of all episodes, but also in reducing the number of episodes
that we have to consider. The idea of maximal episodes is that any subepisode
can be generated from a superepisode, therefore it makes no sense to enumerate
all subepisodes. We have already indicated in Sect. 4, maximal episodes represent
large sets of episodes, but do not lead to the most frequent interesting episodes
since they usually contain noise. This is true if the minimum support threshold
is the only property available for episodes. Now, we consider all rules that can
be generated from an episode. Given an episode, from any superepisode we can
generate all those rules that can be generated from the episode itself. Thus, when
considering the maximum J-value that can be obtained according to (3) or (4), a
superepisode cannot have smaller J-values than any of its subepisodes — which is
basically the same situation as before where we had no episode measure. (Noisy
patterns are “prefered” due to the fact that they have more subpatterns.) This
is the reason for not using the maximum of all rules but the definition (5).

We consider episodes as distinguished, if the full episode is needed to obtain
the best J-value, that is, there is a subdivision point ¢ and no subrule of P; - C;



yields a better J-value. If P; - C; contains incidential intervals we can improve
the value of the rule by removing them. But if the best J-value is obtained by
using all intervals, it is very likely that all of these intervals are meaningful in this
context. Therefore we call such an episode a core episode. It provides the core
for many maximal superepisodes but the J-value cannot be improved by them.
Therefore we believe that the core episodes are close to those patterns that are
caused by the repetitive cycling through internal states of a system. The core
property can be determined by the algorithm in Fig. 3 if we additionally store
a pointer to the pattern that provides Jminj[i]. If for some pattern P and some
1 this pointer leads us to P itself, we have identified a core episode.

With maximal episodes no maximal superepisodes exist (by definition), but
core episodes may have superepisodes that are core episodes. This is due to
the fact that a long episode may obtain its core property from a subdivision
point that is larger than any subdivision point of the subrule. An episode ABC
(interval relationships omitted) may be a core episode from ¢ = 2, that is, the rule
AB — C has a better J-value than any of its subpatterns. However, if ABC'is a
prefix of an even longer episode ABCDE, the superepisode may also be a core
episode for ¢ = 3. Among the set of core episodes we therefore consider only the
maximal core episodes (that is, core episodes that have no core superepisode).

7 Episode Generalization

At this point we have identified a set of maximal core episodes, which is much
smaller than the set of episodes or even maximal episodes. By definition, every
interval in a core episode seems to be meaningful, since it cannot be removed
without decreasing the J-value. So, is it sufficient to present only the maximal
core episodes to the domain expert?

Our answer is yes, given that the pattern space is powerful enough to express
all relationships in the data. As we have mentioned in the introduction, we think
that this pattern space adequacy cannot be guaranteed — except in rare cases.
Assuming pattern space inadequacy, the answer is no. We have already discussed
several examples: If the relationship is decomposed into many different fragments
it is very likely that none of the fragments itself yields a strong rule and thus none
of these fragments becomes a maximal core episodes. Nevertheless, such episodes
carry valuable information despite their low J-value — if they are considered in
the context of similar episodes.

Our approach to solve this problem is the generalization of episodes to new
(disjunctive) longer episodes. For a naive approach (cf. Sect. 3) the computation
effort is far too big to be feasible. But the pattern space is usually chosen care-
fully, taking the kind of expected patterns into account. So what we obtain is by
no means a random fragmentation of the true pattern, but it is very likely that
certain aspects of the true relationship can be captured by an episode in the
pattern space. From a computational perspective it is much more promising to
start generalization from such a near-miss episode than generalizing everything.
Our hypothesis is that maximal core episodes provide such near-miss patterns.



Thus, we will use the core episodes as the starting point for generalization. As
before, the J-measure plays an important role in judging about the usefulness (or
acceptance) of a possible generalization. It will only be accepted, if the J-value
of the episode can be improved. Thus, a generalization itself becomes a (gener-
alized) maximal core episode. As a positive side effect, the existence of a new
(longer) core episode prunes other core episodes which are now subepisodes of
the generalization. Thus, generalization helps to reduce the number of maximal
core episodes as well as improving the rating of the remaining core episodes.

We always select the best-so-far maximal core episode to be generalized next.
Once the episode has been generalized, it will not be considered again for general-
ization. Let R be such an episode. Generalization of R will be done incrementally,
starting from episodes (not only core episodes) of length | R|+1, then |R|+2, etc.
Thus we start with collecting in S all episodes of length |R|+1 that contain R as
a subepisode. Since we want to improve the J-rating of episode R, we start from
the largest possible subdivision point ¢ down to 1 (cf. episode ranking in Sect.
5). For each value of ¢ we try to find a subset G C S such that the disjunctive
combination of episodes in G maximizes the J-value3. If the maximal J-value is
higher than that of the core episodes Jg[i], generalization was succesful and G
is considered as a new maximal core episode.

Finding a subset G of S requires to estimate the support of the disjunctive
combination of episodes in G, which usually requires another database pass.
We are not allowed to simply add the support values of the single episodes
since some sliding window positions may contribute to multiple of the episodes
in G. However, during frequent pattern enumeration we maintain a condensed
representation of the pattern locations, namely a list of intervals in which the
patterns are visible [7, 9]. This representation can be used to unite and intersect
support sets efficiently and thus to find G more efficiently.

Having found some ¢ and G such that the J-value is improved over the core
episode, we mark the episodes in G as being part of a generalized core pattern
and mark all subpatterns of them, too. This is to exclude maximal core patterns
that are subepisodes of the generalized core pattern from further generalization.

8 Experiment

We want to consider an artificial test data set we have used earlier in [§8]. We
prefer to show some results using an artificially generated data set over a real
data set, because only in this case we know about the true patterns in the data.
The following description of the data set is taken from [8].

We have generated a test data set where we have randomly toggled
three states A, B, and C at discrete time points in {1,2,...,9000}
with probability 0.2, yielding a sequence with 2838 states. Whenever

3 The number of superepisodes was very moderate (< 30), so we used complete search
in our experiments, which is not feasible for large sets of superepisodes. We will
investigate this point in the future.



we have encountered a situation where only A is active during the
sequence generation, we generate with probability 0.3 a 4-pattern A
meets B, B before C, and C overlaps a second B instance. The length
and gaps in the pattern were chosen randomly out of {1,2,3}. [...]
We consider the artificially embedded pattern and any subpattern
consisting of at least 3 states as interesting.

Thus, the 3 rules A -+ BCD, AB — CD and ABC — D were considered as
interesting in [8]. In terms of episodes, this corresponds to a single interesting
episode ABCD (interval relationship omitted). For a window width of 16 and a
very low minimum support threshold of 0.1% we obtain 17484 frequent patterns
with up to 10 intervals. From the low support value, the comparatively small
database, and the fact that we have only a single true relationship in the data,
we expect many incidential patterns that are not meaningful. Considering only
meaningful episodes rather than all patterns reduces the set to 8579 (49%),
among them are 2425 maximal episodes (13.9%). However, we have found only
669 core episodes (3.8%), among them 515 maximal core episodes (2.9%). As
expected, the best maximal core episode is our artifically embedded pattern:

A —10.0004,0.01] B —[0.36,0.46] C —[0.47,0.47) B

The intervals denote the range of possible J-values for rules extracted from the
episode. For instance, if the expert agrees with the episode and wants to use
it as a rule, whatever conclusion he may select from the two last symbols, by
selecting an appropriate subset from the premise he will obtain a J-value within
[0.36,0.46]. The gap between the two rightmost J-intervals is smaller than the
the gap between the two leftmost intervals, from which one can conclude that
the premise “A” alone does not provide useful rules but in combination with B.

As already mentioned, the data set from [8] was not designed to illustrate
generalization. Therefore we were surprised to find a meaningful generalization
of the ABCD sequence. The following 11 superepisodes (depicted graphically)
were considered during generalization:

€]
for X € {4,B,C}, (6)

[XTETE] @m for X € {B,C}, (7)
€] ®)

(€]
for X € {B,C}, 9)
]

for X € {B,C}, (10)
(ATB] [C]
& & (11)



While a disjunctive combination of these specialized rules did not increase
the J-value of the rule ABC' — B it did for AB — CB. The increase in the
minimum J-value was only moderately (increase from 0.3618 to 0.3675), but
nevertheless interesting to interpret. The generalization used 6 out of the possible
11 superepisodes. None of the episodes in (6) was used: For any meaningful
pattern it is very likely to observe any of the labels A, B, or C in a before
relationship if the window is sufficiently large. Consequently, these labels are not
useful for predicting the continuation of the sequence and thus do not improve the
J-value of a rule — it makes sense to discard these episodes during generalization.
Also episode (8) was not considered: From the description how the patterns
were generated, the second A instance tells us that the first 3 intervals were
not generated according to the explanation given above — the pattern is thus
incidential and correctly discarded. All other episodes, besides (9) for X = B
were used for generalization. While we have no explanation why the case X = B
is excluded, the used episodes (7), (9), (10) and (11) share a common property:
There is a B or C instance with non-empty intersection with the first A instance,
but the right bound of the A instance is never included in this intersection. This
summary comes pretty close to the original formulation

Whenever we have encountered a situation where only A is active
during the sequence generation, we generate [...]

With the used pattern space we are not able to express that no other intervals
besides A are observable at some point in time. However, if we observe that a
B and/or C instance has ended just before an A instance is ended, it seems
to be much more likely that the condition “only A is active” holds at the end
of A. This observation increases the goodness-of-fit of the specialized rules but
cannot be reflected by a single episode. Only by generalization we can find this
relationship and overcome the inadequacy of the pattern space.

9 Conclusion

In this paper we have examined how to shrink the amount of “discovered knowl-
edge” (patterns or rules obtained from association rule mining) that has to be
inspected by an expert of the field manually. There are three reasons for an
unnecessary high number of rules: (a) subrules are enumerated, (b) incidential
occurrences produce further variants of rules, (¢) inadequacy of pattern space.
While the first two have been addressed before in the literature, the pattern space
inadequacy has not been addressed explicitly. By pattern space inadequacy we
refer to the fact that the definition of the search space does not necessarily con-
tain all relationships in the data. We assume that this inadequacy holds more
often than not — even for the artificial data set used in Sect. 8, which has been
designed before we thought about pattern space inadequacy, this phenomenon
can be observed. We have proposed a way to overcome these problems by re-
stricting ourselves to core episodes rather than all frequent patterns (addressing



(b)), considering only the maximal core episodes for episode enumeration (ad-
dressing (a)), and providing a scheme for core episode generalization (to address
(c)). The preliminary results we have achieved so far are promising.
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