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Abstract
Fuzzy clustering algorithms like the popular fuzzy c-
means algorithm (FCM) are frequently used to auto-
matically divide up the data space into fuzzy granules
(fuzzy vector quantization). In the context of fuzzy sys-
tems, in order to be intuitive and meaningful to the user,
the fuzzy membership functions of the used linguistic
terms have to fulfill some requirements like bounded-
ness of support or unimodality. By rewarding crisp
membership degrees, we modify FCM and obtain dif-
ferent membership functions that better suit these pur-
poses. We show that the modification can be interpreted
as standard FCM using distances to the Voronoi cell of
the cluster rather than using distances to the cluster pro-
totypes. In consequence, the resulting partitions of the
modified algorithm are much closer to those of the crisp
original methods. The membership functions can be
generalized to a fuzzified minimum function. We give
some bounds on the approximation quality of this fuzzi-
fication.

Keywords: fuzzy minimum function, fuzzy c-means,
ISODATA, Voronoi diagram, nearest neighbour, fuzzy
partition, noise sensitivity

1 Introduction

When building fuzzy systems automatically from data,
we are in need of procedures that automatically divide
up the input space in fuzzy granules. These granules are
the building blocks for the fuzzy rules. When modelling
an input/output relationship, the membership functions
of these rules play the same role as basis functions in
conventional function approximation tasks. To keep in-
terpretability we usually require that the fuzzy sets are
specified in local regions, that is, the membership func-
tions have bounded support or decay rapidly. If this re-
quirement is not fulfilled, many rules must be applied
and aggregated simultaneously, such that the final result
�
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becomes more difficult to grasp – one is not allowed
to interpret a fuzzy system rule by rule any longer. A
second requirement is that the fuzzy sets of the primi-
tive linguistic values should be simple and unimodal. It
would be counterintuitive if the membership of the lin-
guistic term “young”, which is high for for “17 years”,
would be higher for “23 years” than for “21 years”.

To gain such fuzzy granules clustering algorithms can
be used. Especially fuzzy clustering algorithms seem
well suited, because they provide the user with a fuzzy
membership function which could be used directly for
the linguistic terms. Unfortunately, the family of the
fuzzy c-means (FCM) clustering algorithms [1] and
derivatives produce membership functions that do not
fulfil the abovementioned requirements [5]. Figure 1(c)
shows an example for FCM membership functions for
a partition of the real line with cluster representatives���	��
 , �
����� and ������� . We can observe that the sup-
port of the membership functions is unbounded for all
clusters, in particular for the cluster whose centre is lo-
cated at �
����� . While for ������
 and �
����� one allows
even in the context of fuzzy systems for an unbounded
support if ��� 
 and ��� � respectively, but at least
the membership function for ������� should be defined
locally. Furthermore, we can observe that the member-
ship degree for the cluster at � � ��
 increases near � , the
FCM membership functions are not unimodal. These
undesired properties can be reduced by tuning a param-
eter of the FCM algorithm, the so-called fuzzifier, how-
ever, then we also decrease the fuzziness of the parti-
tion and finally end up with crisp indicator functions
as shown in figure 1(a). The problem of unimodality
can be solved by using possibilistic memberships [2],
but the possibilistic c-means is not a partitional but a
mode-seeking algorithm. In [5] the objective function
has been completely abandoned to allow user-defined
membership functions, thereby also loosing the parti-
tional property.

In this paper, we investigate alternative approaches to
influence the fuzziness of the final partition. We con-
sider a “reward” term for membership degrees near �
and 
 in order to force a more crisp assignment in sec-
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(a) Indicator functions of crisp partition.
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(b) Intuitively fuzzified partitions of fig. 1(a).
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(c) FCM membership functions ( ������� � ).�
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tion 3. If we choose a (in some sense) maximal re-
ward, we arrive at fuzzy membership functions which
are identical to those that we would obtain by using a
(scaled) distance to the Voronoi cell that represents the
cluster instead of the Euclidean distance to the clusters
centre, as we will see in section 4. Furthermore, the
membership functions – as a whole – can be interpreted
as a fuzzified minimum function [3], for which we give
an estimation of the error we make when substituting a
crisp minimum function by its fuzzy version (section 5).

2 Objective-Function Based Fuzzy
Clustering

In this section we briefly review the fuzzy c-means
algorithm [1], for a thorough overview of objective-
function based fuzzy clustering see [4], for instance. Let
us denote the membership degree of datum ��;=<?> ,

@ <BA 
DCFEGEHEHC+IKJ , to cluster L�M�<ON , PQ<RA 
�C�EHEGEHC��"J , byS M9T ;U<WV � C�
/X . Denoting the Euclidean distance by Y�Z ,
we minimize the objective function[�\^] N C1_a` >Ub � cd;�e �

fd MGe � S \M9T ; Y �Z ] � ; C L M b
iteratively subject to the constraintsg �1h ; h cji fd MHe � S M9T ; ��
DC g �1h M h f i cd;�e � S M9T ; � � (1)

In every iteration step, minimization with respect to S MkT ;
and L6M is done separately. The necessary conditions for
a minimum yield update equations for both half-steps as
follows S M9T ; � 
l fm e ��npo1qr!sGt�u T v�w8xo1qr!sGt�u T vFy�x/z|{}K~ { (2)

and for the prototypes

L�M � l c;�e � S \MkT ; � ;l c;�e � S \MkT ; (3)

Figure 2(a) shows an example for an FCM clustering
with ����� . The membership degrees are indicated by
contour lines, the maximum over all membership de-
grees is depicted.

3 Rewarding Crisp Memberships
in FCM

Some properties of the membership functions defined
by (2) are undesired – at least in some application ar-
eas, as we have seen in the introduction. Let us consider
the question how to reward more crisp membership de-
grees. We would like to avoid those small peaks of high
membership degrees (cf. figure 1(c)) and are interested
in broad areas of (nearly) crisp membership degrees
and only narrow regions where the membership degree
changes from 0 to 1 or vice versa (cf. figure 1(b)). Let
us choose a couple of parameters ��;)<������ , 
�� @ ��I ,
and consider the following modified objective function[ � cd;�e �

fd MGe � S �M9T ; Y �Z ] ��; C L�M�bp� cd MGe � �D;
fd;�e �)� S M9T ;�� 
�%�

�

(4)
The first term is identical to the objective function of
FCM with � � �

. Let us therefore examine the second
term. If a data object � ; is clearly assigned to one pro-
totype L M , then we have S M9T ; � 
 and S m T ; � � for all
other ���� P . For all these cases, the second term eval-
uates to �j� u� . If the membership degrees become more



fuzzy, the second term increases. Since we seek to min-
imize (4), this modification rewards crisp membership
degrees.

Since there are no additional occurrences of L M in the
second term, the prototype update step remains the same
as with FCM, as given by (3).

Lemma 1 The necessary condition for a minimum of
(4) yields the following membership update equation:S M9T ; � 
l fm e � o1qr!sGt u T v w x � � uo1qr!sGtFu T v�y�x � � u (5)

Proof: Let us consider (4) for a single datum ��; .
We apply Lagrange multipliers to satisfy the constraintl fMHe � S M9T ; ��
 for ��; (cf. (1)). We have

� ��� � ���	� 
� � ��
�� ����� � 
 
 � �� � ����� ��� � � � �������� 
 �"!$# �� � ����� � � ��� �&%
Setting the gradient to zero yields' �'�( �

fd MHe � S MkT ; � 
�� �' �' S m T ; � � S m T ;*)���;-�jL m ) � � �D; ] S m T ;�� 
� b,+ (
Note that we have fixed � � �

in (4) to obtain an ana-
lytical solution. From -/.-/0 y21 u we obtainS m T ; � �-�D;�� (� )���; �jL m ) � � �D;
Using -3.-54 , we havefd MGe � �-�D;�� (� )�� ; � L M ) � � � ; ��
6 ( � � 
l fMGe � � )�� ; �jL M ) � � � ; � �D;
Substituting

(
in the previous equation yields (5).

Obviously, we immediately run into some problems
when choosing ��; �7)���;��UL6M�) for some 
 � P � � .
Then, the distance value Y �MkT ; � �D; becomes negative and
the same is true for the membership degrees ( Y MkT ; �Y Z ] � ; C L M b ). Therefore, we have to require explicitly
the constraint � � S M9T ; � 
 . From the Kuhn-Tucker
conditions we obtain a simple solution as long as only
a single prototype has a distance smaller than � ; to � ; ,
in this case we obtain the minimum by setting S M9T ; ��
 .
However, things are getting more complicated if multi-
ple negative terms Y�M9T ;-� �D; occur.

If we want to avoid the problem of negative member-
ships, we could also heuristically adapt the reward ��;
such that Y �MkT ; � � ; always remains positive. The maxi-
mal reward we can give is then8:9<; Y � = T ; �>8:9<; A Y �M9T ;�? P < A 
DC�EHEHC��'J J �A@

and thus S MkT ; � 
l fm e � o1qw 1 u �CBED F o1q G 1 uo1qy 1 u �CBED F o1q G 1 u (6)

Without an @ � � we find always an P such thatY � H ] � ; C L M bD� 8:9<; � = T ; � � and therefore S MkT ; ��
 . In other
words, for @ � � we obtain a crisp partition, the algo-
rithm reduces to ISODATA. The choice of @ influences
the fuzziness of the partition, similar to the fuzzifier �
with FCM. Figure 1(b) shows different partitions for @
ranging from � E � 
 to � E � .
Surprisingly, besides the different shape of the mem-
bership functions, the resulting algorithm performs very
similar to conventional FCM, in terms of resulting clus-
ter centres. The modified version seems slightly less
sensitive to noise and outliers, as we will see in the
next section. Figure 2 compares the results of FCM
and our modification for an example dataset. The max-
imum over all membership degrees is indicated by con-
tour lines.
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(a) FCM partition.

-6

-4

-2

0

2

4

-4 -2 0 2 4 6

fe
at

ur
e 

at
tr

ib
ut

e

feature attribute

membership degrees

data prototypes 0.96 0.93

(b) Voronoi-like partition.�
	���
����JI��,KEL�M",�3ONG���



4 Memberships Induced by
Voronoi Distance

With FCM the Euclidean distance between cluster cen-
troids plays a central role in the definition of the mem-
bership functions. The idea is to “represent” each clus-
ter by a single data instance – the prototype – and to use
the distance between prototype and data objects as the
distance between cluster and data object. Then, the rel-
ative distances (cf. (2)) define the degree of membership
to a cluster, e.g., if the distance between ��; and L � is half
the distance to L � , the membership degree S � T ; is twice
as large as S � T ; . If we consider crisp membership de-
grees things are different, the membership degree does
not depend on the ratio of distances, but the distances
serve as threshold values. If the distance to L � is smaller
than to L � – no matter how much smaller – we always
have S ; T � ��
 .
Let us consider (6) again and assume that L%M is closest to
��; . No matter if �:; is far away from L6M (but all other L m
are even further away) or ��; is very close to L6M , the nu-
merator of the distance ratio is always constant @ . Inside
a region in which all data points are closest to L%M , the
distance to cluster P is considered to be constant @ . The
membership degrees S m T ; are therefore determined by
the denominator, that is, mainly by Y �Z ] � ; C L m b . There-
fore, the membership degrees obtained by (6) are no
longer defined by a ratio of distances, but the maximum
reward

] 8 9 ; Y � = T ; b has the flavour of a threshold value.

Let us consider a crisp partition, which is induced by
cluster centroids. The resulting partition is usually re-
ferred to as the Voronoi diagram. The Euclidean dis-
tance of a data object �:; to the hyperplane that separates
the clusters L6M and L � is given by ? ] �:; � � � b�� I � ? where� � is a point on the hyperplane, e.g.,

� � � ] L � +QL M b�� � ,
and I � is the normal vector I � ��� �	� ] L M �UL � b with� � � �
 v�w � v�� 
 for 
��� P . How can we define the dis-
tance of a data object �:; to a the Voronoi cell of clus-
ter P rather than to a separating hyperplane? If we do
not take absolute values, we obtain directed distances] �:; � � � b � I � , which become positive if �:; lies on the
same side as the cluster centre and negative if ��; lies on
the opposite side. Taking the absolute value of the min-
imum over all the directed distances yields the distance
to the border of the cell (see also [3] for the case of rect-
angles in shell clustering). If � ; lies within the Voronoi
cell of cluster P , then the distance to the cell is zero. We
can formalize this special case easily by setting � � � 

and defining:Y�� ] �:; C L�M�b ������ 8:9<;� h � h f ] � � � � b � I � ����
In figure 3, � ; is closest to the separating line betweenL � and L � , therefore this distance serves as the distance
to the Voronoi cell of L � . The graph of Y�� for the 4
clusters of figure 3 is shown in figure 4.
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If we do not scale the normal vectors I � to unit length,
but assume � � � 
 for all 
 , we preserve the shape ofY � (position of hyperplanes does not change), only the
gradient of the different hyperplanes varies. The follow-
ing lemma establishes a connection between the scaled
Voronoi distance and the approach discussed in the pre-
vious section.

Lemma 2 Given a Voronoi diagram induced by a set
of distinct points L6M , 
 � P � � , and a point � . Using� � ��
 for all 
)� 
 � � , the (scaled) distance between
� and the Voronoi cell of point L M is given by

Y � ] � C L M b � 
� � Y �Z ] � C L M bK� 8:9<;� h � h f Y �Z ] � C L � b � (7)

Proof: Some simple transformations yield the follow-
ing chain of equalities����� � � � �"!# $$$$ %'&)(�+*�,�* � - � � � , � � �� .0/ � � � � � , ! $$$$# $$$$ %'&)(�+*�,�* � � / � � � � � , ! � �� � � /� � � � � /, � , ! $$$$# �� $$$$ %'&1(�+*�,�* � � / � � � � / � , � � /, � , �
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 � 
�� � � � 
 
 $$$$�����# �� � 
�� �J� � 
 
 � %'&1(�+*�,�* � 
�� � � , 
 
 �
In equation ( � ) we have used the trivial fact

that any Y�Z ] � C L�M�b is greater than or equal to8:9<; �1h � h f Y�Z ] � C L � b .
Thus, the lemma tells us, by using a maximum reward
the resulting membership values are identical to those
that we would obtain by using standard FCM member-
ship functions and a (scaled) Voronoi cell distance in-
stead of Euclidean centroid distance.

By replacing the Euclidean distance with the Voronoi
distance during membership calculation, we obtain dif-
ferent membership functions which are much closer to
those of the original ISODATA (cf. figure 2(b)). In this
sense we can speak of a new ISODATA fuzzification.

Note that with FCM squared Euclidean distances are
used to determine the membership degrees, but if we
use the maximum reward/Voronoi distance we use Eu-
clidean distances to the Voronoi cell, which are not
squared. Therefore, the modification might be less sen-
sitive to noise and outliers.

5 Interpretation as Fuzzified Min-
imum Function

In the previous sections we have seen how the introduc-
tion of a reward term leads us to a fuzzy partition which
is more closely related to the results of the crisp ISO-
DATA (or a Voronoi partition) than the standard FCM
partition. The ISODATA algorithm minimizes the ob-
jective function cd;�e � 8:9<;�1h M h f )�� ; � L M ) �
The crisp minimum function can be reformulated as8:9 ;� h M h f )�� ; � L M ) � � fd MHe � S M9T ; )�� ; � L M ) � (8)

using crisp membership degrees S M9T ; defined by S M9T ; �
 6 P ���	��
*8 9 ; )��:; � L6M�) � ( � otherwise). If the par-
tition of the discussed algorithm can be interpreted as
a fuzzified Voronoi diagram, is it also possible to inter-
pret the term

l fMHe � S �M9T ; Y � ] � ; C L M b as a fuzzified mini-
mum function? We have faced the problem of a fuzzi-
fied minimum function before in [3]. There, we consid-
ered the terms Y M � � M � 8:9<; �1h � h m � � in a minimum
term 8:9<; ] � � C � � C�EHEGEHC � m b as the “distance of argument P
to the minimum” and used the standard FCM member-
ship degrees to assign a “degree of minimality” to each

argument �/M . Note that this leads to the same equations
as we have discussed in the previous sections.

Regarding the approximation quality, we state the fol-
lowing theorem:

Theorem 1 (Fuzzified Minimum Function) Let � i�
�6�
� ����� be a strictly increasing function with
� ] �6b�� � , let @ <Q���6� . Then for all Y � ] Y �"CFEGEHEHC Y m b <� m , � � � ] � ] Y � � 8 9 ; A'Y �"C�EHEGC Y m J bE+ @:b�� , ��� 
 , the
following inequality holds:

�����
md � e � S � Y � � 8:9 ; A'Y � C Y � C�EHEHEGC Y m J �����

� @ ��� + @ ] �^� � � 
 b � @ ] �^� 
 b
where S � � �

�ayw�� { � �� w and � is the number of indices 

for which Y � has at least a distance of 
 � @ from the min-
imum: � � ? A 
 ? 
)� 
 � � C Y � � 8:9 ; A�Y �'C Y ��C�EHEHEGC Y m J �
 � @ J ?
Proof: We have the following equality

�� , ��� � ,� ,�� �� ��� �� w
# �� , ��� � ,

� ,! yw�� { " y# � { 1 #%$�Dw � #" yw&� { � w# �� , ��� � ,(' �� � � � �
� ,�� �� ��� ' �) � � � )+*� � � )# �� , ��� � ,�' �� � � � � *� , � �
� �� � � ' �) � � � )+*� � � )# � �, ��� � ,�' �� � � � � *� , � �

� �� ��� ' �) ��� � )%*� � � ) (9)

Using the abbreviations , � 8:9 ; A�Y �"C Y �DCFEGEHEGC Y m J we
estimate the approximation error as follows

$$$$$
� �, � � � ,�' �� � � � � *� , � �
� �, � � ' �

� � � � � *� , � � ��- $$$$$# $$$$$$
- � �, � � � ,�' �� � � � � *� , � � . �.-

- � �, ��� ' �� � � � � *� , � � .
� �, � � ' �� ��� � � *� , � � $$$$$$# $$$$$

� �, � � � � , �.-
!
' �� ��� � � *� , � �

� �, � � ' �� ��� � � *� , � � $$$$$� {� $$$$$
� �, � 
 � � , �.-

!
' �� ��� � � *� , � �

� �, � � ' �� ��� � � *� , � � $$$$$� q* $$$$$
/10 � �, � 
 � � , �2-

!
' �� � 
 � � *� , � �

� �, � � ' �� ��� � � *� , � � $$$$$��34 $$$$$
/10 � �, � 
 � � , �2-

!
' �� � 
 � � *� , � �

' �
� � 
 � � $$$$$# $$$$$

/ 0
�� , � 
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!
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Remarks:

�
�

Without loss of generality we have assume that Y �
is the minimum and have

] Y � � , b � � .
�
�

From Y � � , we can conclude � � � ] � ] Y � �Y � b + @:b�� � @ � .
�
�

We have dropped all summands in the denomina-
tor

l m� e �
	 mMGe � T M��e � � M that contain � � . All sum-
mands are positive.

� � We drop one @ in the denominator � � � ] Y � �
, + @:b ] Y � � , + @:b�� � � which makes the term
smaller.

��
 Here we assume the worst case that all Y � are mini-
mal and thus Y � �., � � . (However, if this would
actually be the case, we can see from the equality
�
�

that the approximation error is zero.) We also
obtain an equality if � ��
 .

If some Y � , 
�<BA � C���C�EHEGC � J , have reached a distanceY � � , � 
 � @ from the minimum, the estimation can
be improved1. If we continue from the result after �

�
we

have Y � �2, � � ] Y � �., b�+ @ � ] � ] Y � �., b�+ @:b�� �
� � and thus may substitute

] Y � � , b by � � . This leads
us to an error below @�� ] �^� 
 b .
To summarize both estimations, if there are � values that
have a distance of at least Y � � 
 � @ + , , we have an
error smaller than @ ] ��� � � 
 b�+ @�� � .
Although we deal only with non-negative distances in
the context of clustering, note that the fuzzified mini-
mum function does also work with negative terms. If
there are negative arguments, the minimum will also be
negative, and subtracting the (negative) minimum from
all other arguments yields a set of non-negative argu-
ments. Also note that the fuzzified minimum is once
differentiable for � � 
 . Figure 5 shows an example
where we take the pointwise minimum of three func-
tions. The resulting fuzzified minimum is displayed for
two different values of @ � � E 
 � � E � (solid lines) using
� ��
DE � . According to the theorem, the error is bounded
by � E ��� / � E 
�� if the minimum is clearly separated from
the other values and � E � � � E � in general.

1This additional condition has not been mentioned in [3].
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6 Conclusions

In this paper, we have presented a modification of FCM,
which is more closely related to the original (non-fuzzy)
ISODATA algorithm. This can be desirable for certain
applications, for example if we want to attach linguistic
labels to the membership functions. We have proposed a
modification of the objective function that is minimized
by FCM to reward nearly crisp memberships. If we
(heuristically) select a (in some sense) “maximum re-
ward”, we have shown that the membership functions
correspond to membership functions that would be ob-
tained by using the distance between the Voronoi cell
and a data object.

The obtained membership functions can also be inter-
preted as a fuzzified minimum function. In retroper-
spective, we can consider the modification as a substi-
tution of the crisp minimum function of ISODATA by a
fuzzified variant.
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