Fuzzy Clustering of Sampled Functions®

Frank Hoppner**

Frank Klawonn

University of Applied Sciences, Emden
Department of Electrical Engineering and Computer Science
Constantiaplatz 4
D-26723 Emden, Germany

Abstract

Fuzzy clustering algorithms perform cluster analy-
sis on a data set that consists of feature attribute
vectors. In the context of multiple sampled func-
tions, a set of samples (e.g. a time series) becomes
a single datum. We show how the already known
algorithms can be used to perform fuzzy cluster
analysis on this kind of data sets by replacing the
conventional prototypes with sets of prototypes.
This approach allows reusing the known algorithms
and works also with other data than sampled func-
tions. Furthermore, to reduce the computational
costs in case of single-input /single-output functions
we present a new fuzzy clustering algorithm, which
uses for the first time a more complex input data
type (data points aggregated to data-lines instead
of raw data). The new alternating optimisation al-
gorithm performs cluster analysis directly on this
more compact representation of the sampled func-
tions.

Keywords: fuzzy clustering, function clustering,
sets-of-features analysis, continuous piecewise linear
function approximation, aggregated data, linear fea-
tures

1 Introduction

Fuzzy clustering algorithms like the algorithm by
Gustafson and Kessel (GK) [6], Gath and Geva
(GQG) [5], or the fuzzy c-varieties (FCV) algorithm
[1] are capable of detecting linear substructures
(clusters) in a set of feature attribute vectors (see
[9] for a detailed discussion). These algorithms
therefore have been used intensively to construct
fuzzy models automatically from data, see [10] for
instance. This data may come from multiple ob-

*This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant no. K1 648/1-1.
** e-mail alias: frank.hoeppnerQieee.org

servations of system behaviour versus time. How-
ever, it is not clear whether the data (which comes
from several observations) should be used to build
a single model. For example, if the system has
multiple internal states it is possible that we ob-
tain (partially) completely different observations.
These observations should not be mixed up if we
want to develop precise models. How can we find
out how many models are necessary (or how many
different states we have observed)? How can we
identify multiple models? These questions lead us
to the problem of “function clustering”, where a
single datum is a time series or sampled function
(characterising a systems behaviour).

In the next section, we shortly review objective-
function based fuzzy clustering methods. In section
3 we show how conventional fuzzy clustering algo-
rithms can be used to solve this problem. In case
of single-input single-output (SI-SO) functions we
can use the Hard c-Connected Lines (HCCL) algo-
rithm [8] instead of the GK/GG/FCV algorithm,
to generate piecewise linear approximations of the
data. The method we propose in section 3 consid-
ers each datum of every sampled function individ-
ually and therefore has to process a large number
of data vectors. In section 4 we therefore generalise
the HCCL algorithm to work on line segments (ag-
gregated points) instead of single points only. This
allows preprocessing the observations in order to
obtain smaller data sets which speeds up the clus-
tering process.

2 Objective Function-Based

Fuzzy Clustering

The process of subdividing a data set X =
{z1,...,2,} C RP™ piv € IN, in distinct, mean-
ingful subsets 1s called clustering. With fuzzy clus-
tering each datum belongs to all clusters simul-



taneously, but to different degrees. Many fuzzy
clustering algorithms minimise the sum of weighted
(squared) distances between data objects and clus-

ter representatives {p1, ..., pc}
Jm(X; U, P) Zzu] -y (1)
j=1i=1

taking the constraints

VieWNg @ Y u;>0 (2)
j=1

Vj € Ny Zuzg =1 (3)
i=1

into account. The membership degree of datum
z; to cluster p; is denoted by wu;; € [0,1]. The
distance or similarity of datum z; and cluster pro-
totype p; is denoted by d; ;. The parameter m > 1
is called fuzziness index and influences the “fuzzi-
ness” of the obtained partition.  Constraint (2)
makes sure that none of the clusters is empty and
thus we really have a partition into ¢ clusters. Con-
straint (3) assures that every datum has the same
overall weight in the data set. Fuzzy clustering
under constraints (2) and (3) is often called “prob-
abilistic clustering”. Other fuzzy clustering tech-
niques, using a relaxed constraint (3), are noise
clustering [2] and possibilistic clustering [11]. The
latter approaches are especially useful when dealing
with very noisy data.

The most popular fuzzy clustering algorithm is
the fuzzy c-means algorithm [1]. There, a cluster
is represented by a “typical datum” p; € RPM,
The Euclidean distance between data vector z; and
prototype p; is used as the distance measure. This
“cluster shape model” searches for spherical clus-
ters of approximately the same size.

Most of the objective function based fuzzy clus-
tering algorithms minimise (1) by alternatingly
optimising the membership degrees and cluster
shapes. From the membership model (e.g. “proba-
bilistic”) and the cluster shape model (e.g. “point-
like”) one can develop necessary conditions for a
local minimiser of J from % = 0 and % = 0.
Due to space limitations we refer to the literature
[1] for the update equations of FCM.

3 Clustering of Sampled

Functions

Let S be a set of time series or sampled functions
S = {S1,...,Sx}. Each S; is a set of feature at-
tributes, S; = {21,252, ..., 25} C RP™ . TLet A

be an objective function-based clustering algorithm
that is capable of analysing a weighted data set: We
can easily extend any of the known fuzzy cluster-
ing algorithms to involve an additional weight w;
for each datum z; € X, leading us from (1) to the
extended objective function

E Z u;! ]wJ (4)

j=11i=1

Jm (X, W;U, P) =

Since the weights are fixed and not subject to op-
timisation, we obtain similar update equations as
before. A weight of w; = 2 has the same effect as
considering data object z; in the sum (1) twice.

As already mentioned, fuzzy clustering algo-
rithms that detect linear substructures in the data
are often used to construct fuzzy models automat-
ically from data. During clustering each proto-
type approximates the system more or less locally.
The complete model is characterized by the “set
of prototypes”, the set becomes a “model proto-
type”. Let P be the set of all possible proto-
types of algorithm A (P = RP™ for the fuzzy
c-means algorithm). In order to “approximate”
a sampled function S; we use a set of prototypes
P; = {pi1,pi2, -, Pic;} CP. To define a distance
measure that reflects the distance of a data series
S; to a model prototype F; it is straightforward to
use

d*(S;, P) - Emm{dA(rmPu)llE{l seit}
k=1
(5)

where ds denotes the distance measure used by
algorithm A. Due to the minimum function it is
impossible to solve for the prototype parameters
directly.

To avoid expensive numerical techniques, let us
shortly review the development of the first fuzzy
clustering algorithm. The hard ISODATA algo-
rithm [3] uses no fuzzy partition and assigns each
datum unambiguously to a cluster. A datum there-
fore belongs always to the cluster with the closest
distance. The hard ISODATA algorithm minimises
the objective function

Jem (X; P)

Z mm :Ej,pi) (6)

ISODATA has been “fuzzified” [4] to the fuzzy
c-means algorithm. When comparing (6) with
(1) we can see that with the fuzzification the
mmd2 term has been replaced by the weighted
sum ZZ L uld?

i34 ;- In analogy we replace the min-
imum term in the distance function (5). Thus the



objective function (1) of algorithm A becomes the
distance of the sampled function S; to the model
prototype F;.

We obtain the objective function of a fuzzy clus-
tering algorithm that partitions data series S; into
sets of prototypes P; from

n

Im(X;U, P) = Zi“?jd?,j

j=1i=1
n c n; ¢y
_ m ~mh g2 . .
= E E U; ; E E Ul,de(‘/EJ,kﬁpzyl) (7)
j=14i=1 k=11=1

where m and u are the corresponding fuzziness in-
dex and membership matrix of algorithm A. From
this objective function we obtain membership and
prototype update equations as follows:

e Membership Update: Given prototypes P; and
data series S; we can calculate the member-
ships u of algorithm A using S; as input data
set and P; as prototypes. From ds and u we
can calculate the objective function of algo-
rithm A, which becomes the distance in the
new algorithm. From the distances we obtain
the membership update equations as usually
(depending on the membership model).

e Prototype Update: In order to update a model
(or set of prototypes) P; we simply call al-
gorithm A with the weighted data set X =
Uj=1..n5;, assigning the weight u; ; to every
element of data series S;. Using F; as the pro-
totypes the extended objective function (4) of
algorithm A becomes (7).

Example

Fifty data series, each consisting of fifty samples,
are plotted simultaneously in figure 1(a). All we
may realise from this plot is that the noise seems
to vary along time. Examining all the noisy time
series one by one may reveal some other informa-
tion, however, it is difficult for the human observer
to compare 50 plots of similar time series with each
other (figure 1(b) shows a single datum as an ex-
ample). The figures 1(c) - 1(d) show two out of
four clusters (resp. models) identified by the algo-
rithm. In this case, fuzzy clustering revealed that
each sampled function has two peaks, one on the
negative and one on the positive x-axis. In our
example each model consists of six GK clusters.
However, it is also possible to use an unsupervised
clustering algorithm A, in order to automatically
adjust the number of prototypes that are necessary
for each model (we will do this in section 4).

Figure 1: Clustering of time series using the ex-
tended GK algorithm. From top to bottom: all
time series, a single time series, two out of four
identified models together with the associated data.

The approach proposed so far works with sam-
pled functions as well as with any other applica-
tion where each datum is a set of features. For
instance it is possible to cluster different geomet-
ric shapes, each of it described by a set of contour
points, with a number of point-like or linear clus-
ters. But if it is clear from the application, as in our
example, that we deal with sampled single-input
single-output functions, other algorithms might be
more appropriate for this task than GK. For exam-
ple, in figure 1(d) we can observe that there is a
long stretched cluster on the left which forces the
neighbouring clusters to re-orientate, too. If we
consider the resulting partition only, we are satis-
fied with the result, but if we want to use the pro-
totypes to develop a fuzzy model of the function
we are not. In [8] we introduced the unsupervised
Hard c-Connected Lines (HCCL) algorithm which
finds a continuous piecewise linear approximation
of the function with optimised number and loca-
tion of knot points. It therefore suits the purposes
of this special case better than the GK algorithm,
classifications as in figure 1(d) cannot occur.

However, regardless which algorithm A we finally
use, since the algorithm is called for a very large
data set US; several times within the prototype
update step — and unsupervised versions of A call
A 1tself multiple times — this approach suffers from



high computational costs. In the following section
we try to overcome this problem in case of real

valued (SISO) functions.

4 HCCL Algorithm with Lin-
ear Features

In this section we modify the unsupervised HCCL
algorithm [8] to work not only with single points
but with line segments (that may represent aggre-
gated points). The HCCL algorithm can be con-
sidered as a hard c-varieties algorithm with cou-
pled line prototypes (HCCL is restricted to 2D
case), e.g. one linear cluster starts where another
has ended. The prototypes represent the sequence
of knot points that define the line segments. The
(squared) HCCL distance of a datum (z; ;)T to
the line segment between prototype (k; ];Z)T and
(kit1 l;:H_l)T is given by the dot product of point
difference and normal vector [8]:

kNN T (k=i )\
()6 () o
k zj ki kiv1 — ki
The distance of a datum to the piecewise linear
function that is deﬁned by the HCCL prototypes
1s obtained from ZZ 1 umdf?, where u; ; denotes

the (hard) membership degree of the jth datum to
the 7th line segment, that is

uij =1 e €L, with I := [k;, kiyq] (9)

Thus the hard membership degrees are parame-
terised by the knots k; such that we always obtain
a continuous piecewise linear approximation of the
data. (Optimisation with respect to memberships
is therefore an optimisation with respect to knot
values k;.) The HCCL algorithm minimises the
overall approximation error that is, the objective

function Z] 1 ZZ 1 Ui d ”
For each time series S; we can apply the unsuper-

vised HCCL algorithm and obtain prototypes rep-
resenting a piecewise linear approximation of the
data. If we replace S; with these prototypes, the
original data is approximated with much less stor-
age needs (data compression). Let us therefore con-
sider a data set that contains line segments leading
from (z; ;)7 to (zj41 #j41) 7. If we assume that
we can find an ¢ € IN¢, for each j € IN¢, such that
[z;,2j41] C [ki, kiz1] (ranges do not overlap), we
can generalise the point distance (8) to

2 ! T ifz — iﬂi+1 :
&, = Aij(A) b dx  (10)
0 2 2

with

_ N 7 Tip1 — %5\ ]fz
Aai(d) = <$J> A <§5J+1 —@) <kt>
This leads us to
Theorem 1 If J, given by (4), (9) and (10)

s mainimised wzth respect  to knot-values k =
(k1, ..., ke) (resp. k= (kl, . c)), the equation k =
—T~'s (resp. k = —T~1s) holds with T € TR°*°,
s € R and s; = Y}7 aj, Tiist = 352, B,
n—1 n—1

T = Zj:l Y Liit1r = Zj:l 6; (T;; = 0 oth-
erwise), where

;= Ui—1j (ici — ici_l) ((3];

+(3i€i—1 —28; - 93]+1)93J)

i1 = 28541 — &j)3541

= wig(kipn — ki) ((Bkigr — 28541 — 3)3541

+(3i€i+1 —28; — 573]+1)33J)

By = ui-1, ((93"]+1 - @)(3]& — 28541 — i"])
_3(126—1 - @)(2]}1' — Ty41 — i"J))
Vo= Ui-1y <_(§3J+1 - f])(3};i—1 = 28,41 — &)

+3(kiy — &;)(2kic1 — 41 — 25))
+ iy (= (41 — 85)(Bkigr — 28541 — &5)
+3(kig1 — &) (2kigr — E541 — £5))
8 = uiy (841 — &;)(3ki — 28,41 — &)
—(kiy1 — &;)(6k: — 32,41 — 38;))

and l; = k;, z; = x; and z; = T; (resp. l; = ky,
z; =&, and Z; = x;).

The assumption that each data line range
[zj,2;41] 1s “enclosed” by a prototype line range
[ki, ki+1] does not hold in the general case. But
we can dynamically subdivide any data line that
crosses several intervals /; such that the resulting
line segments do not overlap multiple prototype
ranges. For further implementational issues (and
for an implementation) see [7]. The cluster merging
procedure [8] of the unsupervised HCCL algorithm
can be applied to this modified algorithm, too. We
call the resulting algorithm the fuzzy c-piecewise
linear functions (FCPLF) algorithm.

Example

To demonstrate the FCPLF algorithm, we show its
performance on an artificially generated data set.
We have chosen three similar functions as shown in

figure 2(a):

y = sin(z)-cos(z?) (11)
y = sin(z+0.3)- cos(a:2 +0.2) (12)
y = sin(z40.1)-cos(0.9%z? +0.5) (13)



For each of the three functions we created 20 time
series, each consisting of 200 samples; the z values
of the samples differed from series to series. For
each time series, we added noise to the summands
within the (co)sine and to the resulting input value
z and output value y (figure 2(b)). The time series
were transformed into continuous, piecewise linear
approximations using the unsupervised HCCL al-
gorithm. Then, the FCPLF algorithm was applied
to the resulting data set. Figures 2(c) - 2(d) show
two out of three resulting models, together with the
corresponding original function. The three models
approximate the original functions pretty well, all
the time series have been assigned to the correct
model.

Figure 2: Clustering of noisy time series (11)-(13)
using the FCPLF algorithm. From top to bottom:
original functions, the 60 time series, the identified
piecewise linear functions together with the original
function.

5 Conclusions

In many applications a single datum consists of a
set of feature vectors, for example with time series
analysis. In certain cases one can take the set of
features as a single big tuple of attribute values,
but this is not possible if the features in the sets
do not correspond to each other or some values are
missing. In this paper we proposed a method to ap-
ply the well-known fuzzy clustering algorithms to

sets of features in general, obtaining sets of proto-
types as cluster representatives. This includes the
case of time series analysis, but may be useful for
other domains like shape clustering, too.

For the special case of single-input single-output
time series we have modified the Hard c-Connected
Lines algorithm to process sets of line segments in-
stead of sets of features. Using line segments as
“aggregated features” corresponds to a data com-
pression which speeds up the clustering process.
We have demonstrated that the resulting fuzzy c-
piecewise linear functions algorithm is capable of
identifying different models within the set of sam-
pled functions.

References

[1] J. C. Bezdek. Pattern Recognition with Fuzzy Objective
Function Algorithms. Plenum Press, New York, 1981.

[2] R. N. Davé. Characterization and detection of noise
in clustering. Pattern Recognition Letters, 12:657-664,
Nov. 1991.

[3] R.Duda and P. Hart. Pattern Classification and Scene
Analysis. Wiley, New York, 1973.

[4] J. Dunn. A fuzzy relative of the ISODATA process and
its use in detecting compact, well-separated clusters.
Journal of Cybernetics, 3(3):32-57, 1973.

[5] I. Gath and A. B. Geva. Unsupervised optimal fuzzy
clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(7):773-781, July 1989.

[6] D. E. Gustafson and W. C. Kessel. Fuzzy clustering
with a fuzzy covariance matrix. In Proc. of the IEFE
Conference on Decision and Control, pages 761-766,
Jan. 1979.

[7] F. Hoppner. Fuzzy clustering algorithms — a tool
library. Open Source Project, http://www.et-inf.
fho-emden.de/~dmlab.

[8] F. Hoppner. Piecewise linear function approxima-
tion by alternating optimization. In Proc. of the 8th
Int. Conf. on Information Processing and Management
of Uncertainty in Knowledge Based Systems (IPMU),
Madrid, Spain, July 2000.

[9] F. Hoppner, F. Klawonn, R. Kruse, and T. Run-
kler. Fuzzy Cluster Analysis. John Wiley &
Sons, Chichester, England, 1999. http://fuzzy.cs.
uni-magdeburg.de/clusterbook.

[10] F. Klawonn and R. Kruse. Constructing a fuzzy con-
troller from data. Fuzzy Sets and Systems, 85:177—193,
1997.

[11] R. Krishnapuram and J. M. Keller. A possibilistic ap-
proach to clustering. IEEE Transactions on Fuzzy Sys-
tems, 1(2):98-110, May 1993.



