
How much true structure has been discovered?

Validating Explorative Clustering on a Hold-Out Test Set

F. Höppner

University of Applied Sciences Braunschweig/Wolfenbüttel
D-38440 Wolfsburg, Germany

f.hoeppner@fh-wolfenbuettel.de

Abstract. Comparing clustering algorithms is much more difficult than
comparing classification algorithms, which is due to the unsupervised
nature of the task and the lack of a precisely stated objective. We
consider explorative cluster analysis as a predictive task (predict re-
gions where data lumps together) and propose a measure to evaluate
the performance on an hold-out test set. The performance is discussed
for typical situations and results on artificial and real world datasets
are presented for partitional, hierarchical, and density-based clustering
algorithms. The proposed S-measure successfully senses the individual
strengths and weaknesses of each algorithm.

1 Introduction

Cluster analysis is about finding groups in data. The most prominent conception
is that clusters are clouds of data objects that should be compact and well sepa-
rated from each other [1–3] or an agglomeration of such clouds [4]. Alternatively
“clusters may be described as connected regions of multi-dimensional space con-
taining a relatively high density of points, separated from other such regions by
a region containing a relatively low density of points” [2], which is closer to the
density-based view on clustering.

Many clustering algorithms have been proposed, such as prototype-based
methods, density-based or hierarchical methods. Each algorithm has its individ-
ual strengths, weaknesses, biases and assumptions and usually it is not a priori
clear which algorithm is best for the data at hand. It is still an open question
how to compare the performance of clustering algorithms. Typically, a validity
measure [5–11] is used to assess the quality of a result such that the performance
can be compared indirectly.

Compared to classification, the variety of performance measures is much
larger and less established. Many validity measures make use of the individual
outcome of the clustering algorithm and thus cannot be used with a competing

0 published in: Machine Learning and Data Mining in Pattern Recognition, 6th Inter-
national Conference, MLDM 2009, LNCS 5632, pp 385–397, Springer

algorithm from a different paradigm (applies to [6–8], for instance). Others do not
address the quality of the clustering, but the accordance of two results (such as
[5]). A good match, however, can be achieved likewise with pairs of good clusters
and pairs of poor clusters. To assess the performance, this measure would require
the existence of a reference solution, which is usually not present in unsupervised
learning. Yet other measures verify the clusters against local distortions of the
data [10] or resampling [11, 12], but they do not allow a comparison of the most
stable partitions of two different clustering algorithms.

Why does clustering suffer from this unsatisfying situation but classification
does not? A classifier can be seen as a function f : X → C ∪ {⊥} providing for
a record x from the d-dimensional data space X the predicted class c ∈ C (or
⊥ in case no prediction is made). This common way of using a classifier makes
it easier to define validation procedures that can be used with any classifier.
With clustering there is not a single common usage – in many applications
cluster analysis is used as a means to an end (e.g. in preprocessing tasks, local
regression model, etc.), but in others as an end in itself (e.g. descriptive or
explorative tasks). Focussing on one kind of application may help us to find a
validation procedure more general than existing validity measures.

In this paper, we will follow this idea and focus on explorative clustering
(pattern discovery). We discuss the typical use in this case, in what respect the
known clustering algorithms provide this information and propose a first va-
lidity measure that goes into this direction. Results on three different kinds of
clustering algorithms (partitional: k-Means [13], density-based: DBScan [14], ag-
glomerative hierarchical clustering (AHC), e.g. [4]) demonstrate the applicability
of the measure across different approaches to cluster analysis.

2 Explorative Analysis and Cluster Assignment

Suppose we are interested in finding groups in our database (of customers, for
example). Note that we are not interested in artificially dividing the customers
into similar groups, but we want to know if the data itself supports a partition
into different groups of customers. We then want to understand the result, i.e.,
in the explorative setting we need a compact, comprehensive description:

1. Where do the clusters lie in the data space and how far do they extend?
– Without loss of generality we assume that clusters are represented by a
set of geometrical elements or shapes such as hyperballs, -boxes, -planes,
-ellipsoids, Voronoi cells, etc. For the sake of simplicity, in this paper we
assume that all clusters c ∈ C are composed out of hyperspherical shapes
B(x, r) = {y ∈ X | ‖x− y‖ ≤ r}.1

2. How large is the gap between the clusters, how well is a cluster separated
from the remainder? – We indicate the gap by a separation area around the
clusters of width 2ε (such that hyperballs of range ε will fit into this area).
This range may vary from cluster to cluster, of course.

1 Note that we do not assume that all clusters have hyperspherical shapes, we only
assume that we can approximate their shape by the union of several hyperspheres.

DBScan [14]

DBScan represents a cluster already by a set of small hyperspheres with some fixed
radius ε around the core points of the cluster. This set corresponds exactly to the set
of basic shapes. The algorithm guarantees only that neighboring clusters have at least
a separation of 2ε, therefore this parameter can be taken unaltered.

k-Means [13]

The original k-Means algorithm is a partitional clustering algorithm that assigns
every record to a cluster, it does not consider the possibility of noise or outliers. Here,
we heuristically define the extent of each cluster by means of hyperspheres: if data
does not fall into their volume, it does not belong to the cluster. Furthermore, if the
hyperspheres of two prototypes intersect, we consider them as representing a single
cluster, so the number of obtained clusters is not always identical to k.
Let Ci contain all data assigned to cluster #i. For each cluster #i with prototype
pi ∈ X we calculate the average distance of all data points assigned to this cluster:

ri =
1

|Ci|
X

x∈Ci

‖x− pi‖

Since this is the average distance, we choose the size of the cluster twice as large, i.e.,
we define the shape of the cluster as a hypersphere with the prototype as its center
and the radius r•i = d

p
2 · rd

i where d is the dimensionality.
The distance between the hyperspheres of cluster #i and #j is given by di,j =
‖pi − pj‖ − r•i − r•j . In case di,j < 0 the hyperspheres intersect and we consider them
as a single cluster (represented by two (or even more)) prototypes.
From the prototype location and the cluster size we can directly calculate the separa-
tion margin between the clusters. If the resulting ε gets very small, 10% of the cluster
radius is used as a lower bound for ε (if ε is very small, the estimated density may
easily become very high because the volume of the neighborhood gets very small).

Agglomerative Hierarchical Clustering (AHC), e.g. [4]

We consider the classical single-linkage AHC algorithm here. The resulting dendro-
gram is used to come up with the final clusters, by cutting off all edges that cross a
certain distance level. This cut-off distance dcut is often determined by visual inspec-
tion of the dendrogram. The leaves of the remaining trees represent the elements of
the cluster. By including all data in hyperspheres of radius dcut around each data ob-
ject in the cluster, the clusters remain disjoint and are represented by simple shapes.
Thereby a separation of ε = dcut is guaranteed.

Table 1. Providing the necessary information for explorative analysis.

Thus, a clustering algorithm may deliver a set S ⊆ IN ×X × IR+ × IR+ where
(c, x, r, ε) ∈ S denotes a hyperball B(x, r) whose elements belong to cluster
#c ∈ IN with a separation of at least 2ε (with ε ≤ r, cf. Sect. 3). To avoid
ambiguities when clusters are composed out of multiple shapes, we require
∀(c, x, r, ε), (c′, x′, r′, ε′) ∈ S : B(x, r) ∩B(x′, r′) 6= O/ ⇒ c = c′ (that is, overlap-
ping hyperspheres belong to the same cluster). This information gives a concise
impression of the reported clusters and also suits an assignment task, where new
data has to be associated with the identified clusters (or regarded as noise).

Although probably all clustering algorithms claim that they are (more or
less) suited for explorative analysis and the assignment task, we can already
see at this point that prominent clustering algorithms do not provide all of the
above-mentioned information. For instance, k-Means provides no information
about the size or separation of the clusters2; agglomerative hierarchical cluster-
ing delivers the points belonging to the clusters, but no extension of the cluster.
Nevertheless, such algorithms are used for such tasks – and typically they are
heuristically extended to provide the missing properties. But these extensions
are usually not part of the original algorithm and often not subject to the eval-
uation procedure. Our proposition is that for explorative purposes a clustering
algorithm must deliver the above-mentioned information and if a heuristic is in-
volved in obtaining this information then it must also be part of the evaluation.
While the validity measure proposed in the next section is not applicable to
standard k-Means alone (because separation information is missing), it applies
very well to numerous variants of k-Means with different heuristic extensions.
For this paper, we canonically extend three common clustering algorithms in a
straightforward fashion as it is often done in the literature (cf. Table 1).

We intentionally selected three clustering algorithms from different
paradigms to show the wide applicability of the approach. These algorithms
(k-Means, DBScan, AHC) are widely known and we refer to the literature for a
detailed description. We restrict ourself to a brief summary of their outcomes.
The k-Means algorithms delivers (an a priori specified number of) k prototypical
data objects that represent a whole cluster. All data is associated with its clos-
est prototype. The DBScan algorithm delivers for each cluster a subset of the
dataset, the set of core points, which offer some minimal data density. The core
points as well as all data within some epsilon-range constitute the cluster. The
AHC algorithm returns a binary tree with the data at the leaves (dendrogram).
Each inner node represent a union of its descendents at some specific distance,
representing the distance between all data in the respective subtrees. By cutting
the tree at some distance d, it resolves into several subtrees whose set of leaves
represent the individual clusters.

2 During k-Means iterations, all data is associated with the closest prototype, but this
does not necessarily mean that once the final prototype locations are found all new
data will also belong to one cluster – in this case there would be no ’void space’
between the clusters.

3 Measuring Recovered Structure

Given that we have the desired information, we now consider how to measure
how well the dataset-inherent structure has been recovered. In all definitions of
a cluster, it must distinguish itself from its neighborhood by an increased data
density. To verify the existence of a cluster, we have to approve a change in
the data density: we expect the data density within a cluster c (interior density
%•c) to be larger than the data density outside the cluster c (exterior density
%◦c). The larger the difference %•c − %◦c , the more distinctive is the discovered
structure. If there is no difference at all or the exterior density is even larger
than the interior density, the algorithm has made an error in its prediction (false
positive). This gives us a very intuitive understanding of the amount of structure
correctly discovered by a clustering algorithm: We define the S-measure (structure
measure) as the sum of differences in the data densities as observed in a hold
out test set:

S =
∑
c∈C

(%•c − %◦c) (1)

Since the recognized structure should be substantial, that is, generalize to
the population from which the data was sampled, we measure this difference
in the data density on a hold-out test set. While the evaluation of a classifier
is done per record (correct class prediction), we evaluate a partition per cluster
(correctly predicted existence of a cluster). Rather than using the data from the
hold-out test set one by one to verify the results, it is used to get estimates of
%• and %◦.

(b) (c) (d) (e) (f)(a)

cluster
reportedtrue

cluster

Fig. 1. Problems that occur with some clustering algorithms.

The data densities within and outside the cluster are derived from multiple
estimates. In a first run, we use the test data as seeds for probing points at which
we measure the data densities. In a second run, we estimate the data density at
these locations and calculate interior and exterior densities. To critically evaluate
the cluster c, we are particularly interested in (cf. Fig. 1) ...

... regions of high data density outside the cluster, because this may indicate
false positives (Fig. 1a), poor shape recognition (Fig. 1b,1c) or cluster split-
ting (Fig. 1e). Therefore we use the data from the hold out test set as seeds
for a set P ◦c of exterior probing points. We thereby ignore regions without
any test data, but the estimated density would be zero anyway.

... regions of low data density inside the cluster, because this indicates a poor
shape recognition (Fig. 1b,1d) or a noise-bridge between clusters (Fig. 1f).
So we do not use the test data as seed but draw random samples x′ ∈ B(x, r)
from a cluster-defining hyperball B(x, r) to obtain a set of interior probing
points P •c .

Finally, for each x′ ∈ P ◦c ∪ P •c we estimate the data density %x′ . For a set of
neighborhoods P ∗c (either P ◦c or P •c), let %(P ∗c) = {%x′ | x′ ∈ P ∗c }. Then we
define for each cluster c

%•c as the 33rd percentile of %(P •c) and
%◦c as the 66th percentile of %(P ◦c)

The rationale for using different percentiles (rather than the median) is again
the critical evaluation of the reported clusters as discussed above (bias to low
densities within cluster and to high densities outside the cluster).

With this definition of %•c and %◦c the S-measure penalizes false positives
because the summand becomes even negative in case there is no difference in
the (average) data density within and outside the cluster (Fig. 1a). Due to the
variance in the measurements, %◦c (66th percentile) will yield higher values than
%•c (33rd percentile) and thus %•c −%◦c < 0. There is no penalty for false negatives
(clusters that were not discovered) because we have no knowledge about such
clusters3. However, since S is not bounded, other clustering algorithms that
discover the missed clusters will outperform the former algorithm in terms of
recovered structure. Note that we intentionally have removed any factor for the
size of the cluster in order to not discriminate against small but substantive
clusters (cf. [15]).

We use hyperballs B(·, ε) of the same size for estimating interior and ex-
terior density of a shape (c, z, r, ε). The rationale behind this decision is that
interior and exterior of a cluster should be analyzed at the same resolution: if
there is only a small margin between two clusters, we have to look at the data
carefully to distinguish the clusters. In this case we do not expect the clusters
themselves to have gaps of similar size, because this would make the current
partition questionable. Therefore, the interior density should be measured at
the same resolution as the separation area. Similar arguments apply for the case
of well separated clusters.

Implementation and Examples for Probing Point Selection

Fig. 2 illustrates how the probing points are determined in our experiments.
For a given x the closest shape element (c, z, r, ε) is identified. If x lies within
the hyperball B(z, r), it belongs to the cluster c. We randomly determine an
x′ within B(z, r − ε), such that the ε-neighborhood around x′ is completely
3 Penalizing false negatives would require their identification by, e.g., a clustering

algorithm. But it is exactly the performance of these clustering algorithms that we
seek to measure, so using them during the evaluation would be circular reasoning.

contained in B(z, r) (case A). Otherwise, if there is no hyperball containing x,
x does not belong to any cluster and we identify the closest separation area.
We avoid border effects by shifting x towards z such that N = B(x′, ε) lies
completely in the separation area (case B). In all other cases, x does neither
belong to a cluster nor a separation area. Once the probing points have been
determined, the densities at these spots are estmated during a second run over
the test set.

in: set of shapes S, x from hold-out test set
out: returns probing point

1 (c, z, r, ε) = argmin(c,z,r,ε)∈S‖z − x‖ − r
2 if ‖z − x‖ ≤ r (case A: x lies within cluster c)
3 randomly sample x′ ∈ B(z, r − ε)
4 return interior probing point x′ for cluster c
5 endif
6 (c, z, r, ε) = argmin(c,z,r,ε)∈S‖z − x‖ − r − 2ε

7 if ‖z − x‖ ≤ r + 2ε (x in separation area)
8 let x′ = x
9 if ‖z − x′‖ ≤ r + ε (case B: adjust x’)

10 x′ = x′ + r+ε
‖z−x′‖ (z − x

′)

11 return exterior probing point x′ for cluster c
12 endif
13 return ⊥ (case C: x is not used as a seed)

C

A

cluster core area

cluster separation area

B

C

Fig. 2. Determining probing points for %• and %◦.

To illustrate the probing point selection, Fig. 3 shows the probing points
for some exemplary cases. In the top row, three clusters identified by DBScan
are shown. One can clearly see how the probing points for the separation area
are aligned around the respective cluster. The space between the exterior prob-
ing points and the interior probing points within the cluster corresponds to the
diameter of the neighborhood. One half of this space is covered by the neighbor-
hoods of cluster core and separation area, resp. The first two examples from the
second row illustrate the case for AHC, which is quite similar to the DBScan
results. The second example shows the case where the single linkage algorithm
has resulted in a joint cluster for the two data agglomerations at the bottom.
Since the space between the three data agglomerations is sparsely populated,
there are fewer exterior probing points in this case and their alignment is less
clearly visible. (But introducing more probing points does not make sense – as
there is no data in our hold out test set in this area, the estimated density will
be zero.) Finally, the last example shows the case of k-Means. Two cases (b, d)
illustrate the report of false positives, which will be penalized by the S-measure,
because the exterior density is equally high or higher than the interior density.

Regarding runtime complexity, the complete evaluation consists of the selec-
tion of k probing points (which is O(n) with a test set of size n), the density

(a) (b) (c)

(d) (e) (f)

Fig. 3. Location of probing points for selected clusters found by DBScan (a-c), AHC
(d, e) and k-Means (f). Data too far away from the selected cluster is shown unaltered.
In case (e) artificial lines have been added to support the visibility of the contour.

estimation (which is O(n ·k)) and the determination of the respective percentiles
(which is O(k log k) in a näıve implementation). For our datasets of moderate
size we used k ≈ n, but for large datasets it is sufficient to consider a random
sample of fixed size s per cluster, that is, k = s · |C|. Thus, the approach is also
suited for large data sets.

4 Experimental Evaluation

Various artificial and real datasets have been used to test the S-measure. The
tables show the averaged S-values over a 10-fold cross validation. Since the den-
sity estimation in the validation phase also requires sufficient data, the training
and test sets were of the same size (50% each), that is, the training/test datasets
consisted of subsets #1-5 (test)/#6-10 (train), #2-6 (test)/#1,7-10 (train) etc.
Note that the S-values in the tables evaluate the clustering as a whole; a poor
S-value does not necessarily mean that none of the clusters has been recovered
successfully, but may also be caused by penalizing a number of false positives.
A more detailed “per cluster”-inspection can be carried out by looking at the
individual summands. For each algorithm, we tried a range of settings for the
main parameter, but there was no exhaustive search for the best setting. As
already mentioned in Sect. 1, a comparison with competitive measures is not

possible, because to the best of our knowledge none of the known measures can
be used for all three algorithms.4

4.1 Typical Situations (Artificially Generated)

The design of the following artificially generated datasets is driven by the known
weaknesses of clustering algorithms, such as the reporting of false positives (k-
Means), difficulties with slowly changing data densities (DBScan), poor shape
recognition (k-Means), sensitivity to outliers (AHC), etc. The datasets provoke
such situations and our aim is not to compare the performance of the clustering
algorithms in the first place (we know in advance which will perform best), but
to see if the judgment of the S-measure corresponds to our expectations, that
is, if it is sensitive enough to recognize the poor performance caused by the
weaknesses of the respective algorithms.

No clusters present: Some clustering algorithms (e.g. k-Means) report a clus-
ter in some area, where the data density is high, but there is no difference
between the data density within and outside the reported cluster (cf. Fig. 1a).
Such arbitrary selected clusters are incidental and the S-measure should penalize
the reporting such clusters (cf. discussion in Sect. 3).

The dataset in Fig. 4 consists of a uniform grid without any internal struc-
ture. The table shows, for each algorithm, the selection of the main parameter,
the number of obtained clusters (minimum/maximum number in 10-fold cross
validation) and mean and standard deviation of the S-measure. Note that each
clustering algorithms gets only half of this dataset (random sample) and there-
fore it looks not quite as regular to the clustering algorithm as the full dataset
shown in Fig. 4. The omitted data introduces a light perturbance in the data
density.

k-Means DBScan (eps=0.2) AHC
k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 1 -0.8 22.1 7 1 128.1 5.8 0.10 1-5 -57.2 44.5
3 1 -2.7 22.1 10 1-2 114.5 26.5 0.13 1 58.3 42.0
4 2-4 -81.4 60.5 13 1 97.8 28.8 0.16 1 114.3 7.8
5 3-4 -162.1 46.0 16 1 56.5 23.8 0.19 1 111.0 6.1
6 4 -182.3 38.7 19 1-3 -26.2 50.3 0.22 1 106.5 5.1

Fig. 4. 1024 records regularly distributed within [−1, 1]2.

This dataset represents an uncomfortable situation for k-Means, since the k
prototypes have to be placed somewhere. For small values of k, the prototypes
4 Some approaches are applicable to all three algorithms, but measure the robustness

or sensitivity, but not the overall quality of the clustering (see also introduction).

are united to one cluster (cf. Table 1), but still the union of 2-3 spheres poorly
approximates a rectangle. On the test set, there are no differences in the average
interior and exterior densities and the S-measure correctly indicates the poor
performance. For small values of MinPts, DBScan correctly identifies a single
cluster that contains (almost) all data (for MinPts=4 and 7 we obtain the true
density of 128 (half of 1024 records within [−1, 1]2)). As MinPts is increased,
more and more data is required to become a core point. This is achieved by
chance in regions where most of the data from the full set is contained in the
training set. But during validation against the test set, the reported cluster shape
cannot be confirmed and the S-value decreases. For AHC, if the cut-off distance
is chosen too small (0.1), the small perturbations induce up to 5 clusters that
cannot be justified by the test set. For larger values all records are included in
a single cluster, but AHC does not achieve the correct (maximal) S-measure of
128 because in hierarchical clustering there is no distinction between core and
border points of a cluster (as in DBScan). Therefore, the density estimation near
the border includes empty areas which damps the obtained interior densities.

(Invalid) Assumptions on Shape. Another problem with many clustering
algorithms is that assumptions on the shape of the clusters do not hold in a given
dataset. As a result, the models fit the true cluster poorly or multiple models
are used to approximate a single cluster in the data. If such a case occurs, there
is either (a) some part of the separation area with a data density as high as
the interior area or (b) some part of the interior area with a data density as
low as the separation area. The probing point selection method as well as the
definition of %•c and %◦c as the 33rd and 66th percentiles were designed to detect
such situations (cf. Sect. 3).

The dataset in Fig. 4 is closely related to this problem, because there is a
single cluster of rectangular shape and the assumption on hyperspherical clusters
does not hold for k-Means. We have seen already, that the poor performance of
k-Means has been detected by the S-measure. Another example is shown in
Fig. 5, consisting of three types of clusters: a Gaussian cluster, a box and a
ring. Although the size of the ring-shaped cluster is recognized by the k-Means
clusters quite well (the data-to-cluster association is correct), it receives small
interior densities since most of the neighborhoods of interior probing points are
empty. Again, AHC and DBScan detect the correct shapes and receive higher
S-values.

Separation and Noise. If clusters of the Gaussian type are close together,
it becomes more difficult to sharply distinguish them. The examples in Fig. 6c
and 7d consist of three clusters each, but with different separation. The larger
the separation area (with a reduced data density) is, the better the cluster can
be distinguished from its surrounding. The k-Means algorithm has an overview
about the (relative) position of each cluster and can actively adjust the width of
the separation area (cf. Table 1). Accordingly, the S-values of k-Means are very
good for all cases but k = 2. It is also remarkable that the correct number of

k-Means DBScan (eps=0.12) AHC
k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 1 -158.6 146.0 4 3 1427.9 39.2 0.10 3-5 1314.6 155.9
3 3 638.4 12.0 7 3 1439.0 45.9 0.13 3-5 1243.1 144.5
4 3 598.2 58.0 10 3 1430.1 45.9 0.16 3-4 1100.4 92.7
5 3 638.0 42.7 13 3 1430.1 54.1 0.19 3 1066.9 19.0
6 3 573.7 63.4 16 3 1423.5 73.8 0.22 3 971.3 14.8

Fig. 5. Results on dataset mixed (500 records per cluster).

clusters is determined in all cases for k = 3, 4, 5, 6 due to the prototype-merging
heuristic in Table 1. For k > 3 at least one cluster is composed out of two
prototypes and this influences the shape of the cluster – it is no longer spherical.
The largest S-measure, however, is obtained for k = 3 where each cluster is
correctly approximated by a single hypersphere.

In contrast to k-Means, DBScan and AHC take a fine-grained look at the
clusters and do not provide much information about their true separation. DB-
Scan has difficulties with clusters that level out smoothly, because incidental data
agglomerations can influence the shape of the cluster dramatically: As shown in
Fig. 3c), although the position of the cluster has been determined correctly, we
have a flat ellipsoid rather than a spherical shape. This shape was justified by
the training set, but was not completely verified by the test set, which is why the
difference %•c−%◦c and therefore its contribution to the S-measure is rather small.
AHC suffers from single linkage distance: As shown in figure 3d), the clusters get
easily connected by chance due to single data points. A consistently high data
density cannot be verified in the test set, which is a poor recovery is penalized
by the S-measure. The bias of k-Means is best suited for these datasets and this
is reflected by the S-values. Again, the expected performance of the algorithm
is well recovered by the S-measure.

k-Means DBScan (eps=0.12) AHC
k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 1 -76.2 84.6 4 2-5 285.1 67.8 0.10 6-12 -474.2 361.8
3 3 748.7 51.3 7 3-4 369.1 73.7 0.13 2-5 43.3 123.0
4 3 541.1 65.8 10 3-4 406.7 76.0 0.16 1-2 46.0 142.7
5 3 600.1 78.8 13 3-4 296.2 118.4 0.19 1 140.1 8.7
6 3 567.1 51.4 16 2-3 137.0 155.8 0.22 1 143.3 8.6

Fig. 6. Results on dataset three-3-7.

k-Means DBScan (eps=0.12) AHC
k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 1 -48.8 113.7 7 3-4 355.8 67.8 0.10 4-8 -98.6 241.2
3 3 691.9 21.5 10 3 391.2 45.4 0.13 3-6 210.9 247.9
4 3 679.9 52.3 13 3 444.3 54.5 0.16 3-4 391.6 75.5
5 3 572.4 32.0 16 3 457.5 66.7 0.19 3-4 388.8 86.5
6 3 521.2 44.6 19 3-4 419.9 138.2 0.22 3 391.6 75.5

Fig. 7. Results on dataset three-3-10.

4.2 Real data

We show the results on three real datasets, namely the iris data, dimensions 4
and 8 of the cloud dataset, and an extract of the wine dataset (dimensions 2, 7,
10 and 11).

The overall best performance for iris (Fig. 8) is achieved by DBScan due to
the good shape adaption. The extremely high variance in the AHC results again
indicate the deficiencies of the single linkage method (for such a small dataset
as iris the existence of a single record may be crucial for AHC). DBScan has an
overall tendency to 2 clusters, whereas with k-Means the majority of runs ended
with 3 clusters.

The 2-dimensional subset of the cloud dataset is comparable to the dataset
in Fig. 5 with respect to the variability in the cluster shapes. Similar to earlier
results, the k-Means results are inferior to DBScan and AHC, although the
variances of DBScan and AHC are at least in some cases extremely high again
(compared to k-Means), which is due to their high sensitivity to noise and the
occassional induction of small local clusters that cannot be verified in the test
set.

The 4-dimensional subset of the wine dataset is roughly comparable to the
dataset in Fig. 6 in terms of cluster shape and noise level. Similar to earlier
results, k-Means performs best here.

5 Conclusions

We have investigated into a validity measure that offers some imporant new
properties. Firstly, it allows the direct comparison of results of clustering al-
gorithms from different paradigms. Secondly, focussing on explorative analysis,
we have proposed to validate the results of a clustering algorithm by verifying
the obtained clusters on a hold-out test set: The larger the difference of interior
and exterior density of the cluster, the more pronounced is the cluster. Thirdly,
the measure penalizes the detection of false positives (reported clusters that are
actually none).

Experiments have been carried out on clustering algorithms from three dif-
ferent paradigms (partitional, hierarchical, density-based). The experiments on

IRIS
k-Means DBScan (eps=0.5) AHC

k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 2 11.6 3.3 4 2-3 68.7 13.3
3 2-3 27.4 10.6 7 2 78.7 15.2 0.19 1-3 -9.6 366.5
4 2-3 17.8 13.7 10 2 76.8 10.3 0.22 2-4 -69.2 215.0
5 2-3 10.8 29.1 13 1-2 68.4 7.4 0.25 1-4 -41.5 21.1
6 2-4 37.2 32.2 16 1-2 60.3 6.3

CLOUD (dimensions 4 and 8)
k-Means DBScan (eps=0.16) AHC

k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 2 677.9 66.0 4 2-3 1449.8 868.8 0.13 2-7 1817.5 848.1
3 3 181.3 42.4 7 1-4 1965.8 635.7 0.16 2-5 1203.6 771.2
4 3 -93.7 78.3 10 2-4 2320.1 190.0 0.19 1-3 1176.2 654.1
5 4 614.8 256.9 13 4 2392.2 220.1 0.22 1-2 957.5 516.3
6 5-6 814.1 202.9 16 3-5 2386.0 215.2 0.25 1 217.9 22.3

WINE (dimensions 2, 7, 10 and 11)
k-Means DBScan (eps=0.75) AHC

k |C| µ σ MinPts |C| µ σ cut |C| µ σ

2 2 16.0 3.5 4 3-5 -4.3 7.3 0.60 5-8 -19.2 13.1
3 2 16.1 2.6 7 2 8.8 2.4 0.65 4-6 -7.7 10.4
4 2 17.5 2.7 10 2 13.0 2.0 0.70 3-5 -4.5 11.5
5 2 15.4 4.6 13 2 14.4 2.9 0.75 3-5 -10.3 7.6
6 2 17.9 6.4 16 1-2 14.4 4.1 1.10 1 2.3 0.2

Fig. 8. Results on real datasets (IRIS, WINE, CLOUD).

various datasets have shown that it rewards strengths and penalizes weaknesses
of clustering algorithms from different paradigms. Therefore we consider the
S-measure as a promising new direction.

In some experiments the observed variance of the S-values was quite high.
There are multiple reasons for this, but the most influential aspect is that for
each of the three algorithms there are certain situations to which they respond
very sensitive, thereby inducing large variance in the results. This is well-known
in the literature and the experiments just underline that it remains an important
research problem to reduce the sensitivity of the clustering algorithms such that
they deliver clusters more robustly.

References

1. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data – An Introduction to
Cluster Analysis. Wiley (1989)

2. Everitt, B.S.: Cluster Analysis. Wiley (1974)
3. Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons (1975)

4. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall (1988)
5. Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. Journal

of the American Statistical Association 66(336) (1971) 846–850
6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York (1981)
7. Xie, X.L., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. on

Pattern Analysis and Machine Intelligence 13(8) (August 1991) 841–847
8. Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. Ma-

chine Learning 2(2) (1987) 139–172
9. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering Validity Methods: Part I.

31(2) (2002) 40–45
10. Möller, U., Radke, D.: A Cluster Validity Approach based on Nearest Neighbour

Resampling. In: Proc. 18th Int. Conf. Pattern Recognition. (2006) 892–895
11. Levine, E., Domany, E.: Resampling Methods for Unsupervised Estimation of

Cluster Validity. Neural Computation 13 (2001) 2573–2595
12. Borgelt, C., Kruse, R.: Finding the Number of Fuzzy Clusters by Resampling. In:

IEEE Int. Conf. on Fuzzy Systems. (2006) 48–54
13. McQueen, J.B.: Some methods of classification and analysis of multivariate obser-

vations. In: Proc. of 5th Berkeley Symp. on Mathematical Statistics and Proba-
bility. (1967) 281–297

14. Ester, M., Kriegel, H.P., Sander, J., Xiaowei, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Proc. of the 2nd
ACM SIGKDD Int. Conf. on Knowl. Discovery and Data Mining, Portland, Oregon
(1996) 226–331

15. Höppner, F.: Local pattern detection and clustering – are there substantive dif-
ferences? In: Local Pattern Detection. Number 3539 in LNAI, Springer (2005)
53–70

