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Abstract. The starting point of this work is the definition of local pat-
tern detection given in [10] as the unsupervised detection of local re-
gions with anomalously high data density, which represent real underly-
ing phenomena. We discuss some aspects of this definition and examine
the differences between clustering and pattern detection (if any), before
we investigate how to utilize clustering algorithms for pattern detection.
A modification of an existing clustering algorithm is proposed to iden-
tify local patterns that are flagged as being significant according to a
statistical test.

1 Introduction

Knowledge discovery in databases (KDD) aims at detecting valid, novel, poten-
tially useful, and ultimately understandable patterns in data [8]. Many tools in
KDD aim at a global characterization of the data, such as decision trees or clus-
tering partitions. The more recent technique of association rule mining, however,
investigates into more local phenomena that do not characterize the database
as a whole but only a small subpopulation. Usually, association rule mining is
considered as the most prominent approach to local pattern detection. However,
experiments with (standard) association rule mining are often somewhat frus-
trating, because the number of local patterns often becomes that large that it
is no longer manageable. And even worse, most of these patterns – flagged as
being potentially interesting – turn out to be neither useful nor valid in the ap-
plication context. For a deeper discussion see [4]. The definition of local pattern
detection given by Hand [10] takes these aspects into account. The main points
in his definition are:

1. A local pattern is a data vector serving to describe an anomalously high

local density of data points when compared to a background model:

data = background model + pattern + random component (1)

1 F. Höppner: Local Pattern Detection and Clustering – Are there substantive differ-
ences. In: Local Pattern Detection, LNAI 3539, 53–70, c© Springer 2005.



2. Local pattern detection is unsupervised in the sense that no information
but the data itself is given to find out what patterns may be present in the
database, if any.

3. Local pattern detection is about inferring from observations, therefore pat-
terns must represent real phenomena and not just noise.

In this paper we will contrast the goals of local pattern detection with those
of clustering (section 2) and discuss some potential problems and consequences
when following the definition above (section 3). Whether a flagged pattern is
substantive or not is influenced by two different facts, one is the statistical sig-
nificance of an identified candidate patterns, the other is the robustness of the
applied algorithms, that is, the sensitivity to initial parameters, which is a prob-
lem with many clustering algorithms in particular. We will discuss consequences
and candidate algorithms in section 4. In section 5 we will finally discuss a
pattern detection algorithm that has many of the desired properties discussed
before, which will be illustrated via some examples in section 6.

2 Local Pattern Detection vs. Clustering

At first glance, the before-mentioned description of pattern detection sounds
almost identical to clustering. Here is an exemplary definition from the literature:

“Clusters may be described as connected regions of multi-dimensional
space containing a relatively high density of points, separated from
other such regions by a region containing a relatively low density of
points” [7]

The identification of (local) regions with high data density (point 1 in the defini-
tion) and the fact that pattern detection is an unsupervised approach (point 2)
establishes a strong relationship between local pattern detection and clustering.

In accordance with point 1 of the definition, we could compose our data
model out of several Gaussian distributions and a single uniform distribution.
If we think of the uniform distribution as the background model in (1) and
the Gaussian distributions as the patterns, the differences between pattern de-
tection and clustering begin to blur. Standard mixture decomposition could be
applied to identify the parameters of the models – and if the parameters of the
Gaussian indicate that only a small portion of the input space is affected (small
covariance), we could speak of an identified pattern.

May be it is surprising that traditional definitions of clustering [7, 12, 14]
do not contain anything similar to the third statement in the definition of local
pattern detection, which refers to the statistical “validity” of identified clusters.1

While it is not mentioned in the definitions, the problem that “the resulting

1 With some clustering algorithms, e.g. when the number of clusters has to be fixed in
advance, so called validity measures are used to “validate” the results. Even if these
measures are not purely heuristic in nature but investigate statistical properties of
a partition, they seldomly take the role of a statistical test.



clustering procedures have no known significant theoretical properties” [5] is
well recognized. But unfortunately not much has changed since Hartigan stated
in 1975 [12] that clustering algorithms “are not yet an accepted inhabitant of the
statistical world”. This makes the current position in pattern detection even more
similar to that in clustering, because in both fields some theoretical framework
is missing. (Given that Hartigan made his statement in 1975 and also given the
lack of progress in this concern, the “development of a theoretical base” [10] for
pattern detection appears really challenging.)

Rather than by using statistical tests, in machine learning overfitting is often
avoided by employing a regularization framework. In contrast to statistics, such
a framework aims at limiting the variability of the models, but does not care
primarily about the statistical significance of the result. On the other hand, if
the assumptions of the used statistical model (which are always present) are
violated (which may happen quite easily in KDD) there is not much left that
distinguishes regularization from statistical relevance tests.

Up to this point the reader may agree that clustering and (today’s) local
pattern detection are indeed very similar. The only distinction that is left is the
explicit focus on local patterns, which cannot be found in clustering. We will see
in the following, however, that this is not enough for a substantive distinction.
So a provocative definition of local pattern detection could be “clustering, done
right”.

3 What is the background model?

Having a background model defining the normal situation enables us to apply a
statistical test to see whether some observations deviate significantly from the
background model or not. Thus the background model plays a key role in detect-
ing substantive local patterns. On closer inspection, however, it becomes clear
that this works well only under the assumption that the background model is
valid. And determining the validity of the background model may be as diffi-
cult as determining the validity of a cluster (or pattern) without a supporting
background model.

This leads us to the general question of how to select a background model. A
good candidate for a background model, when little domain knowledge is avail-
able, might be the uniform distribution. Figure 1(a) illustrates a hypothetical
data set. On the right hand side the data density is 4.0 (per some area) and on
the left it is 2.0, both sides are occupied by approximately the same number of
data objects. On both sides, there are smaller regions in which the data density
is 3.0; intuitively, these are the “patterns”. If we assume a uniform distribution
as the background model, we obtain an average density of 3.0, which perfectly
corresponds to the density of our patterns. Therefore, this background model
would not flag them as substantive patterns. The background model may flag
the larger regions as deviations from the background model, but they do not
qualify as patterns due to their size. (By the way, does the small cluster on the



right qualify as a pattern? It represents a deviation from the background model,
but its data density is smaller rather than larger.)
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(b) Locality is a matter of scale: The
environment of figure.

Fig. 1. A hypothetical data set.

The point in Fig. 1 is of course that a single, simple background model will
not work. Either the background model must be flexible and complicated, or it
must be possible to define different background models in different parts of the
data space.2 In the context of clustering, we could say that we have two clusters
in Fig. 1(a), the left and the right part of the figure. And within each cluster,
there is a small subcluster – which we may call a local pattern. But indeed, we
never know whether we currently observe a cluster, a background model or a
local pattern, unless we know about the scale at which we look on the data.
(The whole Fig. 1(a) may be a local pattern itself – in the upper right corner
of the coarser view of figure 1(b).) Even though we may be interested in local
patterns only, we have to carefully consider structures at any larger scale. In
analogy to (1) we could try to express this fact by a recursive definition

data = model + noise where

model = atomic model | background model + model∗ (2)

2 In association rule mining, the minimum support threshold may be seen as being
part of a very coarse background model. In a k-dimensional boolean space, we have
2k possible configurations. For n records and a uniform distribution, we expect n

2k

objects per combination. The minsupp threshold, however, is the same for all item

sets of any size and does not depend on k.



where model∗ means that any number of models can supplement the background
model. Thus, the data may be represented by a hierarchical tree of models, where
the same model may serve as a cluster in one level and a background model in
another. Local patterns (in the sense of small clusters) can be considered as the
leaves of this model tree.

A background model helps with the identification of substantive local pat-
terns only if the background model itself is valid. Simple examples (fig. 1(a)) show
that we cannot restrict ourselves to a global, simple background model. Estimat-
ing a valid background model of arbitrary complexity (eq. (1)) in one step seems
unrealistic. Utilizing erroneous or inadequate background models puts the va-
lidity of the identified local patterns in question. The most promising approach
is to start with a simple model (whose parameters can be estimated easily and
robustly) and use this as the basis for the next hierarchy level to come (eq. 2)).
Then, for the identification of all models in later stages, we already benefit from
the existence of a valid background model (stepwise refinement). This approach
allows us to stick to simple background models, such as the uniform distribution,
even in cases like figure 1(a) (only the boundary remains to be determined). And
this approach also underlines that we cannot focus on local structure only, but
must carefully investigate structures at any scale.

4 Escaping from Heuristic Thresholds

One can easily find clustering algorithms that respect these ideas. For instance,
we could start by estimating the parameters of a mixture of Gaussians. In [5]
(p. 558) a statistical test is proposed to decide whether a cluster may have been
generated from a single Gaussian. Such tests can be applied to each cluster for
validation; if the test fails, we may generate a new data set that contains only
the data objects belonging to this cluster (for instance, we could sample from
the original data set using the a posteriori probabilities of being generated by
the Gaussian). We then apply the same clustering algorithm once more, which
leads us to a hierarchical subdivision of the previously discovered cluster. The
data set refinement is stopped if such a refinement cannot be justified by the
data any longer. A similar method (where the tests are not statistical in nature)
can be found in [9].

When implementing such algorithms technical details become highly relevant
for failure or success, such as:

– Did the algorithm yield the correct solution (that is, did the expectation
maximization algorithm yield the (globally) optimal solution)?

– Was the assumption of Gaussian distributions justified?
– If we need data density estimations (e.g. to detect the clusters in Fig. 1(a)),

did we select an appropriate size of the area that is used to estimate the
density?

Most clustering algorithms require a couple of initialization parameters – and
are generally more sensitive to their setting than we would like them to be. The



(background) models are not the only information we are processing, and the
same effort to validate background models and patterns should also be spent
on any other step in the line of processing, because invalid intermediate results
also deteriorate the correctness of our final patterns. The theoretical advantage
of using statistical tests with the background model is worth nothing if the
algorithms pass ill-formed pattern candidates to the test.

With every (heuristic) threshold an algorithm requires we increase the risk
of processing unvalidated data. And a lot of decisions may be necessary, in
particular in the preprocessing phase. Most often, the parameters are chosen on
the basis of some small sample and visual inspection, but in KDD we cannot be
sure that the parameter will be valid for all unseen data to come. In fact, there
might be no single parameter that suits all local patterns equally well.

In the recent past, the multiscale approach has turned out to be a powerful
weapon against this problem: Rather than choosing one parameter setting, ex-
amine the results for all possible settings and choose the single or multiple values
that yield the most stable results. Multiscale techniques have been proven ex-
tremely helpful in many areas, such as image and shape recognition [15], signal
analysis [13, 16], data compression [17], and also clustering [2, 1], to mention
only a few. The next section briefly summarizes the OPTICS algorithm [1], a
multiscale clustering algorithm, which will be used in the subsequent sections
for pattern detection purposes.

Multiscale Clustering

In this section we will informally introduce the OPTICS algorithm, for the full
details we refer to [1]. Density based clustering algorithms usually count all data
objects within a hypersphere (or hyperbox) of fixed size to obtain a density
estimate. We say the neighborhood Nε(q) = {x | ‖x − q‖ ≤ ε} of a point q in
the database D is dense, if |Nε(q)| ≥ k. Given k and ε, a cluster C is defined
as a non-empty set, which satisfies two conditions: (a) a cluster has at least one
point with a dense neighborhood and (b) for each point p ∈ C with a dense
neighborhood, Nε(p) ⊆ C holds. Since the identified clusters depend on the
choice of ε, we speak of ε-clusters. The DB-SCAN algorithm [6] determines all
clusters (with respect to ε and k) in O(n log n) where n is the number of points.

The choice of ε is crucial in the DB-SCAN algorithm, and often it is not
possible to discover all the structure in a dataset with a single choice of ε. The
idea of the OPTICS algorithm is to generate all partitions for all possible values
of ε within some range [0, εmax] (in an efficient way). But then it remains still
unclear how to interpret or analyze that many resulting partitions. An interesting
question to ask is at what distance ε a point p’s neighborhood will become dense
(called core distance) and at what distance a point p will belong to a cluster
for the first time (called reachability distance). (Apparently the reachability
distance is less than or equal to the core distance, because at the core distance
the point will become a cluster of its own.) The OPTICS algorithm determines
these two values for all data objects and, furthermore, an ordering of data objects
that allows for a reconstruction of any DB-SCAN partition (see [1]). Figure 2(a)



shows an example of the so-called reachability plot, which aligns the data objects
according to the determined ordering on the horizontal axis. For any point p
in the plot (e.g. the marked one in Fig. 2(a)), the data points with smaller
reachability values to the left make up a (DB-SCAN-) cluster at the chosen
value of ε.

ε

(a) Identification of an ε-cluster. (b) Decreasing ε to ε
′ leads to em-

bedded data subsets I
′ ⊆ I.

Fig. 2. The reachability plot (result of the OPTICS algorithm). Horizontal axis: point
ordering, vertical axis: reachability value

Now it should be clear, how clusters (and local pattern candidates) are found
in the reachability plot: Clusters are “dents” (or valleys) in the graph, indicating
a region of high data density surrounded by data with lower density. Since the
width of a valley is determined by the number of data objects in the cluster, we
can use the width to distinguish large from small clusters (patterns).

5 An Approach to Local Pattern Detection

In [1] a heuristic procedure is proposed to extract clusters automatically from
the reachability plot. Thresholds on the steepness and length of the flanks sur-
rounding a flat valley are used to identify clusters. Although this technique seems
to work well, a drawback is the need for selecting a new heuristic parameter.

Here, we choose a different approach. Two things are needed in order to detect
substantive patterns: the pattern itself and the background. For the moment we
are not concerned about what model we will actually use, but about the data
subset that will be used to estimate the model’s parameters (pattern as well
as background model). A reasonable way to identify subsets is to consider all
data objects that are density connected for some ε (that is, belong to the same ε-
cluster). Local regions of high data density can be obtained from the reachability
plot by drawing a horizontal line at εP . Each interval on the data axis, where
the reachability plot drops below this line, corresponds to a data subset in which
all points are density-reachable at εP . Let us denote the data objects associated



with such an interval by IP and denote the number of points by nP . When
decreasing εP the subsets become more dense and smaller (cf. Fig. 2(b)).

Since we need two subsets, a larger one that corresponds to background and a
smaller one that corresponds to the pattern, we simply draw another horizontal
line at some larger εB > εP . For each local pattern subset IP we obtain a
background subset IB with IP ⊆ IB . Now, if the pattern model P (estimated
from data in IP ) deviates from the background model B (estimated from data
in IB) significantly, we have identified a substantive pattern.

This illustrates the intended approach to the detection of a substantive local
patterns, but the thresholds εP and εB have not yet been determined. It is also
not yet clear, how a statistical test to identify a deviation of a pattern from its
background can be carried out.

5.1 Choosing pattern and background

At the beginning, with not information available, the whole data set will be
considered as the dataset for the background model (εB is the maximum of all
reachability values). From the reachability plot we can collect all reachability
values that actually occur and scan them from the largest (current background)
to the smallest value. For every new value ε we pass, we have one or more data
objects whose reachability value is identical to ε. Since large reachability values
indicate that there is a larger gap between the data to the left and on the right,
such a data point subdivides the current data subset into two or more parts (cf.
Fig. 3(a)). If a statistical test (that still has to be developed) indicates that there
is a significant deviation of one of the these subset from the current background,
we mark this subset as a cluster (or deviation from the background). If we
move the scan line further downwards, this new subset serves itself as the new
background model for subsequent subdivisions, as illustrated in figure 3(b). In
this way, we create a hierarchical tree of subsets directly from the reachability
graph, similar to the one discussed in [13].

5.2 A Pattern Test

In the following we need local data density estimates. To calculate the data
density we need to approximate the space that is occupied by a subset of the
data. To get this estimate, we use the second outcome of the OPTICS algorithm,
the core density of each data point. This is the distance to the kth neighbor and
can therefore be used for local data density estimation3. Given that for a data
object x the distance to the kth neighbor in the d-dimensional space is r, on

average it occupies the space Vx = V
k , where V =

√
πd

Γ (d/2)r
d is the space occupied

3 We used a value of 5 for k to limit the influence of border effects. Larger values are
better for visual inspection of the reachability plot, but if a pattern consists of a
few points only and k is high, it is very likely that the density estimation is heavily
influenced by the surrounding data that do not belong to the pattern whose density
we want to estimate.
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ε1

ε

(a) If ε1 decreases, the associated
data subset is split up by a peak in
the reachability plot.

(b) Once a significant deviation has
been identified, the newly identified
pattern plays the role of the back-
ground as ε decreases further.

Fig. 3. Identification of background and pattern.

by the sphere containing the k nearest neighbors of x and Γ denotes the Gamma
function. In the two-dimensional case of our illustrative examples, we assign to

each data object x a volume of Vx = π·r2

k . The volume that is occupied by a
subset of the dataset is simply the sum of volumes of each data point within
the pattern or background. It should be noted that this estimation contains only
the occupied space and free space in between is not considered. For instance, if
we have two uniform clusters of identical density, the estimated volume for this
data set contains the volume of the clusters only, but not the space between the
clusters.4

There are several possibilities for defining models for patterns and back-
ground. For instance, we could use a uniform data density; we may assume that
the data objects are uniformly distributed in the occupied data space, and that
we have found a substantive cluster if for some subset the number of data ob-
jects differs significantly from the expected number of data objects given the
volume of this subset. Having assigned data volumes VP to the pattern and VB

to the background, we can define a binomial distribution where the probability
of a randomly chosen data object lying in the pattern volume is simply p = VP

VB

.
The expected number of data objects in the pattern is then nB · p, which can
be tested against the actual number of data objects nP (where nP is the num-
ber of data objects in the pattern and nB in the background). Unfortunately,
this approach fails in practice. Suppose we have a data set generated completely
at random from a uniform distribution. It may happen that a few data points,
say 3, are by chance very close together, much closer than the average distance
between data objects. This leads to a very small total volume for this subset.

4 This is quite different from those approaches to clustering where assumptions on
certain cluster shapes are made, such as hyperspherical clusters with k-means and
derivatives. There, cluster volume estimations are usually based on the center and
some mean distance between data objects and center.



Any background set occupies much larger space VB , which leads to very small
pattern probabilities p. Such small probabilities make the chances of generating
3 data objects within the pattern region very unlikely even for small background
sample sizes. In consequence, this approach flags much more patterns as being
significant than there are actually in the dataset.

It is also possible to assume that the local data densities within a subset
obey some known distribution and to test the parameters obtained from the
pattern and the background for being identical. But from the construction of
the subsets via the reachability plot it is clear that the pattern sample is not
a random sample of the background subset, but we intentionally consider only
those data values that have a small data volume. Therefore it is quite obvious
that we will observe significant deviations in, say, the mean density of pattern
and background quite frequently.

The approach that evaluated best is the following: Let %i be the data density
estimated for data object xi and N be the number of data objects, %min =
min{%i|1 ≤ i ≤ N} and %min = max{%i|1 ≤ i ≤ N}. The range [%min, %max] of
estimated data densities is partitioned into m equally sized parts

Si = [%min + (i − 1)∆, %min + i · ∆]

with ∆ = |%max − %min|/m (in the experiments m was set to 24). We consider
the local data density as being an attribute of the data object itself rather
than a property of its neighborhood. Thus B (resp. P ) is a m-nomial random
variable whose outcome determines the density of a point in the background
(resp. pattern) dataset; P (B = S1) denotes the probability of a randomly chosen
data object to ’have’ a data density within [%min, %min + ∆]. The distribution
P (B = Si) is empirically estimated from |{xj |%min + (i − 1)∆ ≤ %j < %min +
i∆}|/N .

A chi-square test can be applied to test whether a sample (the pattern subset)
may have been generated from this multinomial distribution. In this case, the
pattern would not be flagged as a deviation from the background. But before
we apply this test, we compensate for the subset selection bias mentioned in the
previous paragraph. The deeper the subset is in the hierarchy (or the smaller
εP is), the higher the data density will be. We therefore do not compare the
m-nomial distributions, but exclude the part of Pr(B) with low data densities,
which are no longer present in the subset due to the way we select the subset from
the reachability graph. That is, we find a lower bound % for the density values
in the subset and compare Pr(B|B > %) with Pr(P |P > %) rather than Pr(B)
with Pr(P ). As an example, assume the background data density distribution
is given by

(0.0, ..., 0.0, 0.01, 0.0, 0.03, 0.05, 0.07, 0.10, 0.09, 0.13, 0.21, 0.12, 0.11, 0.08)

that is P (B = Sm) = 0.08, P (B = Sm−1) = 0.11, etc. Starting from the left
(S0, sparse data, low data density), we calculate the number of data objects
that we expect in the pattern subset with this data density, given the size |P | of
the current pattern candidate P . If this expected number is below 5 or no data



objects with this data density were observed in the pattern subset, the chi-square
test cannot be applied and we consider a reduced (m − 1)-nomial distribution
with the leftmost slot removed. This step is repeated and the number of slots
is reduced to some 0 ≤ m′ ≤ m. In the example, for |P | = 100, m′ = 9. With
% = %min + m′ · ∆, the distribution P (B|B > %) (that is, only a m′-nomial
distribution) is then tested against P (P |P > %). This procedure is to some
degree a technical necessity to apply the chi-square test, but also effectively
excludes regions of low data density in the background in the comparison with
the pattern candidate and thereby compensates the discussed pattern selection
bias.

number of data objects
Figure noise pattern 1 pattern 2 pattern 3

5 2000 – – –
4(a) 2000 50 – –
4(b) 1500 250 250 100
4(c) 1500 400 100 100
4(d) 2000 50 30 20

mean values
Figure pattern 1 pattern 2 pattern 3

4(a)
(

0.3

0.3

)

– –

4(b)
(

0.3

0.7

) (

0.7

0.2

) (

0.8

0.7

)

4(c)
(

0.4

0.5

) (

0.7

0.2

) (

0.8

0.7

)

4(d)
(

0.4

0.6

) (

0.2

0.4

) (

0.9

0.1

)

covariances
Figure pattern 1 pattern 2 pattern 3

4(a)
(

0.0252

0

0

0.0252

)

– –

4(b)
(

0.12

0

0

0.052

) (

0.12

0

0

0.12

) (

0.052

0

0

0.052

)

4(c)
(

0.22

0

0

0.22

) (

0.052

0

0

0.12

) (

0.052

0

0

0.052

)

4(d)
(

0.052

0

0

0.052

) (

0.022

0

0

0.032

) (

0.022

0

0

0.022

)

Table 1. Construction of the data sets in figure 4 (number of global noise points, mean
and covariances of local patterns).



6 Examples

In this section we present some results obtained from the proposed local pattern
detection algorithm. We discuss results for five data sets, one of them consisting
of 2000 data objects uniformly distributed in the unit square. All other data sets
are depicted in figure 4(a)-4(d). The dataset in Fig. 4(a) has also been used in
[3]. Table 1 summarizes how the data sets have been generated. Especially Fig.
4(d) represents a difficult problem, because the superimposed patterns are really
small and quite difficult to identify even for a human.
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Fig. 4. Collection of test data sets, generated according to table 1.

Figure 5 shows the reachability graph for the uniform data set and two dif-
ferent values of k (number of data points in a dense neighborhood). Although no
substantive patterns were superimposed over the uniform noise, the reachability
plot shows many random local minima and maxima, which are more distinct
for k = 20. For all experiments k = 5 has been used because 20 data points is
already the size of the smallest pattern we want to discover in Fig. 4(d) (cf. also
footnote 3).



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

(a) k = 5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

(b) k = 20

Fig. 5. Reachability plot for uniform distribution with k = 5 and k = 20.

Figure 5(a) additionally shows via horizontal lines the data subsets that
were identified as substantive patterns by the algorithm, as it was discussed
in Fig. 3. Four such intervals have been determined, one contains almost 75%
of the data set and therefore would not qualify as a small cluster or pattern.
Given the number of flagged patterns reported in [3], showing only 4 substantive
pattern/background-deviations (only 3 qualify as potential patterns) is an im-
pressive small number. The four identified subsets are shown in Fig. 6. The top
left figure corresponds to the long line, the top right figure to the short line to the
right. The two figures in the bottom correspond to the small patterns that use
the “long line” subset as the background pattern. In both of these subpatterns
the data density deviates by chance significantly from the data density in the
background.

For the dataset in Fig. 4(a) with a single substantive cluster, five pat-
tern/background combinations have been identified. They are depicted in the
reachability graph in figure 7. Four of the five subsets are subsets of each other
(the algorithm focuses slowly on the core of the pattern), such that only the
“smallest” subset qualifies as a local pattern. Two of these hierarchically embed-
ded subsets are shown in the bottom row of images in Fig. 7, with the smallest
cluster (right bottom) corresponding very well to the superimposed normal dis-
tribution. The single remaining subset is shown in the top right image, which
identifies another region of particularly high data density. This pattern is not
artifically generated but occurred by chance, but only one such incidental ag-
glomeration has been flagged.

The results of the datasets in Fig. 4(b) and 4(c) are shown in Fig. 8 and 9,
resp. In both cases we have quite large patterns, but different data densities.
The data densities of the patterns in Fig. 4(b) deviate clearly from the back-
ground noise. Similar to the previous case, the algorithm determines a sequence
of significant deviations that slowly focuses on a small spot, which can then be
considered as a local pattern. Although the number of marked subsets is quite
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Fig. 6. Flagged clusters in the uniform data set. Top row: the whole dataset is the
background data, the black points are the pattern. The pattern in the top left figure
corresponds to the long line in Fig. 5(a). Bottom row: The identified pattern in the top
left figure became the background (gray) for the two patterns in the bottom row. The
patterns are again shown in black, the background in gray. The points in light gray do
not belong to background nor pattern.

large in Fig. 8 (top left), we have only five different local patterns identified.
The three largest correspond to the superimposed patterns and are shown in the
figure. The fact that – compared to Fig. 8 – much more deviations have been
recognized is due to the fact that Gaussian distributions have been superim-
posed: rather than an abrupt change in the density, which would lead to a single
deviation, we have a slowly increasing data density which introduces several sig-
nificant deviation levels. If we are interested in local patterns only, we can ignore
all those patterns that contain an even smaller subpattern, which leads us again
to a very small number of flagged local patterns.

In contrast to Fig. 4(b), the data densities of the patterns in Fig. 4(c) do
not deviate that much from the background density, but this does really affect
the performance of the algorithm, as we can see from Fig. 9. We have fewer
focusing steps, but again the smallest patterns correspond to the superimposed
Gaussian distributions. Besides the three true patterns, only one more false
positive pattern has been flagged.

Finally, Fig. 10 shows the results for the most difficult test set in Fig. 4(d).
Five local patterns are identified, three of them correspond to the true patterns,
we have only two false positives.
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Fig. 7. Flagged clusters in the data set of Fig. 4(a). (See also explanations in Fig. 6.)

7 Summary and Conclusions

We have seen that local pattern detection (in the notion of [10]) is very similar
to clustering. The challenge in local pattern detection is almost the same as in
clustering, namely to identify valid, substantive structure (clusters, patterns) in
data. The smaller the structure, the more difficult it is to determine its validity,
because smaller structures are more likely to occur by chance.

To tackle this problem, it was proposed in [10] to install a (global) back-
ground model to verify local patterns against the background. The feasibility of
the approach depends on the validity of the background model, but we have seen
that we cannot restrict ourselves to simple background models. Therefore, a hi-
erarchical approach appears to be most promising: instead of estimating a global
complex background model, the utilization of a tree of simple (background) mod-
els is proposed, where each of them is installed only if it significantly deviates
from the previous model. The hierarchical approach underlines that local pat-
tern detection cannot be concerned about the local structures only, but has to
carefully investigate structures at any scale – just like clustering.

Flagging a pattern candidate as being substantive or not is one thing, but the
same care should be applied to the identification of pattern candidates (which are
then passed to the statistical test). The more heuristic parameters an algorithm
utilizes, the higher the chances of choosing inappropriate values. If the results
are very sensitive to these parameters, how can we be sure that we identify real
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Fig. 8. Some flagged clusters in the figure 4(b). (See also explanations in Fig. 6.)

patterns or just artefacts? Multiscale algorithms have the advantage that they do
not count on the user’s ’guessing’ capabilities but almost eliminates a threshold
by analyzing the results over a large range of possible settings.

The OPTICS algorithm is a clustering algorithm that satisfies most of these
requirements: it is a multiscale algorithm, is quite insensitive to the choice of
the only parameter k, detects clusters of arbitrary shape and is efficient. We
have discussed an alternative ’backend’ to this algorithm that identifies a tree of
significant deviations, whose leaves correspond to local patterns. For a number
of two-dimensional test cases the results were shown: all patterns have been
identified and only a very small number of false positives have been flagged.
Validating the approach in a broader set of test data remains for future work.

Acknowledgments: Many thanks to Prof. Dr. Kriegel for kindly providing
an implementation of the OPTICS algorithm.
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