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Abstract The application of a (smoothing) filter is common practice in
applications where time series are involved. The literature on time series
similarity measures, however, seems to completely ignore the possibility
of applying a filter first. In this paper, we investigate to what extent the
benefit obtained by more complex distance measures may be achieved by
simply applying a filter to the original series (while sticking to Euclidean
distance). We propose two ways of deriving an optimized filter from clas-
sified time series to adopt the similarity measure to a given application.
The empirical evaluation shows not only that in many cases a substantial
fraction of the performance improvement can also be achieved by filter-
ing, but also that for certain types of time series this simple approach
outperforms more complex measures.

1 Motivation

Time series comparison became almost a standard operation just like comparing
ordinal or numerical values with tabular data. A broad range of different sim-
ilarity measures has been proposed in the literature, ranging from simple and
straightforward measures such as Euclidean distance (ED) to more complex mea-
sures that deal with temporal dilation and translation effects such as dynamic
time warping (DTW [1]). Extensive comparative studies have been carried out
to compare these measures over a variety of datasets [8,9].

While some scenarios may call for a highly flexible measure, such a measure
may perform worse where the flexibility is not needed to solve the task. Just like
with classifiers it may misuse its parameters to overfit, which is unlikely to hap-
pen with simpler measures. Thus, if a comparable performance can be achieved,
we should go with the simpler measure (Occam’s Razor). The investigation of
the literature on time series similarity measures reveals a surprising fact: in this
context, smoothing of time series is almost completely ignored. The application
of a smoothing filter can be considered as a pre-processing step and is applied in
many machine learning and data mining applications, but neither plays a role in
the comprehensive experimental comparison of time series similarity measures
[8,9], nor in a survey on clustering time series data [7] (with distances at the
core of any clustering algorithm). This is not to say that the time series in the
comparative studies are not pre-processed, in fact they are usually standardized
before presented to the similarity measures, or various time series representations
are considered, which implicitly perform smoothing (e.g., piecewise approxima-
tions) or simplify noise removal (Fourier or Wavelet transform), but filters are



not explored in general. This is surprising because noise and outliers are very
well perceived as problematic aspects in similarity search. The contribution of
this work is to bring filtering techniques back to the conscience of the time series
similarity measure community, the proposal of two approaches to derive an opti-
mized filter for measuring time series similarity and an experimental evaluation
demonstrating its high potential.

2 Definitions and Discussion

A time series x of length n is a series (xi)1≤i≤n of n measurements. The simi-
larity of two series x and y is usually measured by means of some distance (or
dissimilarity) measure d(x,y) ≥ 0 where a small distance indicates high simi-
larity. Some distance measures assume that both series x and y have the same
length, but in case this is not given one of the series may be stretched to the
length of the other and such measures remain applicable.

Similarity. There are two major groups of similarity measures. Lock-step
measures directly compare corresponding values of two time series, that is, the ith

value of x with the ith value of y, as in the Euclidean distance. Simple distortions
such as an offset in the recording time make two observations of the same process
dissimilar under Euclidean distance. Elastic measures identify a warping path,
a monotone transformation of time, such that series x corresponds best to the
warped series y (e.g. dynamic time warping and variations thereof [1,2,3]). One
can also find various modifications of these measures, e.g., the authors of [5] try
to “prevent minimum distance distortion by outliers” by giving different weights
to |xp(i) − yi| depending on the temporal offsets |p(i)− i|. But it has also been
pointed out in recent publications that simpler concepts may be hard to beat
[9] or even outperform complex approaches [4]. Some applications seek similar
subsequences of time series only, but this is accomplished by applying the same
range of similarity measures to data from a sliding window, so the fundamental
problem remains the same (only the arguments of the measure change).

Filtering. Filters have a long tradition in signal processing to reduce or
enhance certain aspects of the signal. In data analysis, filters are often applied to
smooth the original series to remove noise or impute missing observations. Here,
we consider (discrete time) linear time-invariant (LTI) filters only. Such a filter
may be described by a vector of coefficients α = (α−m, α−m+1, . . . , αm−1, αm) ∈
R2m+1 and the application of the (discrete) filter α to a (discrete) time series x is
defined as the convolution (x∗α)i =

∑m
j=−m αj ·xi+j . The convolution x∗α can

be considered as a smoothed version of x, but for x∗α to have the same length as
x we need to clarify what xi+j may refer to when i+ j < 1 or i+ j > n. Circular
discrete convolution is frequently applied (index modulo time series length), but
there is no justification why the last few values of x should influence the first
few values of a smoothed x. So instead of a circular convolution we define for an
arbitrary series x of length n: xi := x1 if i < 1 and xi := xn if i > n.

Benefit of Filtering. We argue that the application of filters has not tapped
its full potential in the area of time series similarity measures. Such measures



are used to compare series against each other with the goal of distinguishing
two (or more) types of situations. Any labeled time series dataset may thus be
considered as an application domain that defines (by examples) which series
should be similar (same class) and which should not (different class). A filter
may be tailored to a specific application by focusing on different aspects of time
series, which may prove filters to be useful in a broad range of applications.

One important aspect in time series similarity is temporal locality. Figure
1(a) shows a simple, artificial set of time series with data from two classes hav-
ing a positive peak and a negative peak, resp. The exact position of the peak,
however, varies. If the peak positions do not match, we obtain the same distance
between examples from the same and different classes with Euclidean distance
– it is thus not helpful for discriminating series from different classes. An elas-
tic measure, such as DTW, however, should have no problems with a correct
alignment. In yet another applications the peak position may be important. In
Fig. 1(b) both classes have a positive peak, but this time the exact position is
relevant. This is a simple task for Euclidean distance but nearly unsolvable for
DTW, which does not care about the exact temporal location. If we choose our
filter wisely, the combination of a filter with Euclidean distance (smearing out
the singleton peak in the first and leaving the data untouched in the second case)
may solve both problems. Secondly, noise may easily distort a time series sim-
ilarity measure, because time series are high dimensional data and suffer from
the curse of dimensionality. The right amount of smoothing may help to identify
the relevant trends in the series and reduce the impact of incidental differences.
Thirdly, a filter is a versatile preprocessor, it can be used to approximate the
slope or curvature (first or second derivative of the original signal). To distin-
guish classified time series it may be advantegous to inspect these transformed
rather than the original series. If we manage to identify the filter that best dis-
criminates series from different classes we increase the versatility of the measure
as it can adopt automatically to a broad range of situations.

3 Optimized Filter for Time Series Similarity

The simple application of the right filter may solve a variety of problems for
similarity measures. Although it seems like a somewhat obvious idea to apply
a filter separately (before applying a distance measure), the potential impact of
filtering on the discrimination of time series has not been explored before. In
this section we propose ways to automatically find the filter that is best suited
to distinguish time series from one another, that is, a filter that emphasizes the
important differences (between series from different classes) and ignore or atten-
uate the less important ones (between series from the same class). Apparently
we assume that some supervision is available by class labels. We consider two
alternative approaches in the following subsections and in both cases we assume
that N series xi, 1 ≤ i ≤ N , of length n are given with labels li ∈ L, |L| being
the number of classes. By x̃i we denote the filtered version of xi (after applying
a filter α = (α−m, . . . , α0, . . . , αm) of size 2m+ 1, that is, x̃ = x ∗α). By xi,j we



denote the jth value of series xi. For the sake of a convenient notation, with xi,j
we refer to xi,1 for all j ≤ 1 and xi,n for all j ≥ n.

3.1 A Filter Derived from Pairwise Comparison

As a first proposal consider the following objective function

min. f(α) = β
∑
li=lj

‖x̃i − x̃j‖2 −
∑
li 6=lj

‖x̃i − x̃j‖2 s.t.

m∑
k=−m

αk = 1 (1)

where
∑

li=lj
is an abbreviation for

∑
1≤i,j≤N,i6=j,li=lj

(same for the second sum

with 6= rather than =). The filter coefficients α are hidden in the smoothed
series x̃i on the right hand side of f . Distances between filtered series from
the same class should be small (first summation), whereas distances between
filtered series from different classes should be large (second summation). Since
the second sum is subtracted, the function has to be minimized overall. The
coefficient β ∈ R is a necessary scaling factor for the first sum, chosen to ensure
that f is a convex function (f → ∞ as ‖α‖ → ∞) that actually has a (global)
minimum. (Without the scaling factor the second sum may dominate, turning f
into a concave function and the minimum is obtained for ‖α‖ → ∞.)

Without any constraint on α there is an obvious minimum α = 0, but this is
apparently an undesired solution because all series would look identical. Here,
we require the sum of all filter coefficients to be 1. This constraint ensures that
the filtered series stay within the same range as the original series.

Proposition 1. The optimal filter α = (α−m, . . . , α0, . . . , αm) ∈ R2m+1 mini-
mizing (1) is obtained from a linear equation system Aα′ = b with A ∈ R2m+2×2m+2,
b = (0, . . . , 0, 1) ∈ R2m+2, α′ = (α−m, . . . , αm, λ) where

A =

(
M 1
1 0

)
(2)

M = 2
∑
(i,j)

si,j

n∑
l=1

πl(xi − xj)πl(xi − xj)
> ∈ R2m+1×2m+1 (3)

πl(z) = (zl−m, . . . , zl+m) ∈ R2m+1 (4)

with si,j = β for li = lj and si,j = −1 for li 6= lj. (The notation
∑

(i,j) is an

abbreviation for
∑

1≤i,j≤N,i6=j.)

Finally, we have to choose β such that f is guaranteed to be convex. This is
accomplished by setting

β = 1.5 · max
−m≤k≤m

{
M 6=k,k
M=

k,k

}
where M= =

∑
li=lj

Mxi,xj
,M 6= =

∑
li 6=lj

Mxi,xj

where Mx,y :=
∑n

l=1 πl(x − y)πl(x − y)>. [Proofs are omitted due to lack of
space.] The factor of 1.5 ensures that the coefficients of the quadratic terms are



strictly positive, other choices are possible as long as the factor is larger than one
(but the larger the factor, the more the first sum of (1) dominates). We obtained
satisfactory results with a factor of 1.5 and stick to it throughout the paper.

If we scale the resulting filter α by some scalar, the (squared) Euclidean
distances scale by the same factor. While the minimization of (1) yields a unique
filter, to discriminate series from different classes we will subsequently order time
series by distance (to find the closest match) and this order is not affected by a
factor. Therefore we divide α by its norm and arrive at a filter with ‖α‖ = 1.

3.2 A Filter Derived from Groupwise Comparisons

If we assume that all time series from the same class label are similar, we may
consider the groupwise (or classwise) means as prototypical time series for their
respective class. We define the mean smoothed series ¯̃xl for a class label l as:

¯̃xl =

∑
1≤i≤n,li=l x̃i∑
1≤i≤n,li=l 1

The rationale for finding a filter is then that the distance of any series x with
label l to the mean series ¯̃xl of its own class should be small, but distances to
the mean series ¯̃xk of other classes, k 6= l, should be large. This time we enforce
a unit length constraint on the filter to allow for filter types whose coefficients
sum up to zero.

max. f(α) =

∑
l,k∈L ‖¯̃xl − ¯̃xk‖2∑

1≤i≤N ‖x̃i − ¯̃xli‖2
s.t. ‖α‖ = 1 (5)

This objective function has to be maximized (subject to the unit length con-
straint): The nominator has to be maximized (distances between class means),
the denominator has to be minimized (distance of individual series to its own
class mean).

Proposition 2. The optimal filter α = (α−m, . . . , α0, . . . , αm) ∈ R2m+1 maxi-
mizing (5) is the eigenvector with the largest eigenvalue of the matrix Q−1P ∈
R2m+1×2m+1, where

P =
∑
l,k∈L

Mx̄l,ȳk
, Q =

∑
1≤i≤n

Mxi,x̄li
, Mx,y =

n∑
l=1

πl(x− y)πl(x− y)>

and πl(z) = (zl−m, . . . , zl+m) ∈ R2m+1.

[Again, the proof is omitted due to lack of space.]

3.3 Computational Complexity

Lock-step measures such as Euclidean distance are computationally inexpensive
(O(n) for the comparison of two series of length n). The nature of most elastic



measures, such as dynamic time warping, calls for a quadratic complexity O(n2).
The advantage of the filter approaches is that we can spend some computational
effort beforehand to determine the optimal filter and then stick to a lock-step
measure, taking advantage of the low linear complexity O(n) when comparing
time series. The computation of the optimal filter involves the pairwise combina-
tion of time series in both corollaries. While proposition 1 requires to combine all
series with the same or different label (O(N2)), with proposition 2 we combine
only mean series for each class label which drastically reduces the computational
effort (O(|L|2) with |L| being much smaller than N).

4 Experimental Evaluation

Time series similarity measures are typically evaluated against each other by
examining their performance in a one-nearest-neighbor (1-NN) classification task
(cf. [8,9]). A dataset is subdivided into train and test data and for each series
from the test dataset, the closest series from the training set is sought. The class
label from the closest match is then used for class prediction. The accuracy (or
error rate) reports the number of correct (or incorrect) predictions. We report
cross-validated results in Table 1 and (in contrast to the typical cross-validation
for classifiers) use only one fold for training and k − 1 for testing. As ED and
DTW are the most prominent representatives of lock-step and elastic measures
we compare them to three types of filters: (a) filter constraint “sum=1” (ED-FS)
as defined by Proposition 1, (b) filter constraint “norm=1” (ED-FN) as defined
by Proposition 2, and (c) a standard Gaussian filter (ED-FG). The filter is
always determined using the training data only, then the filter is applied to
the test and training data and the 1-NN classifier is carried out with Euclidean
distance.

Filter Width. Both proposals for determining an optimized smoothing filter
require the filter size m to be given a priori. We ran experiments with varying
the filter size to observe the effect on the classification rate. There are differences
in the performance, but the variation is quite limited. For all experiments in this
paper, however, we have consistently chosen 2m to be 10% of the time series
length but not larger than m = 7.

4.1 Artificial Data

As a sanity check, we revisit the two datasets from section 2 that are particularly
difficult for either DTW or ED: In Fig. 1(a) the series from two groups differ
in the orientation of a single peak (up vs down), but the exact location of the
peak varies. A small amount of warping compensates for the offset in the peak
position, but for ED two series from the same group are (most of the time)
almost as similar as two series from different groups. Smoothing the series blurs
the local peak, which makes it easier to detect the similarity between peaks of
the same direction even if no warping is possible. As we can see from Table 1
the filter approaches perform (equally) well (about 94% accuracy).
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Figure 1. Some data sets used. Top row from left to right (a)-(c), bottom row (d)-(f).
All datasets consist of 100 time series. Class information is color-coded (green/black).

The second example is shown in Fig. 1(b): the peak orientation is always
identical (up), but the exact location of the peak makes the difference between
both classes. As expected DTW is not able to perceive a difference between both
classes, but for ED this is a very simple task (100% accuracy). The proposed
approaches manage to adopt automatically to this situation, FS and FN perform
very well (close to 100%, cf. Table 1), but apparently the standard Gaussian filter
cannot help here, its performance is close to the poor DTW performance.

Response to Noise. A second set of examples is shown in Fig. 1(c-d),
where the dataset (c) consists of sinusoidal curves plus Gaussian noise and a
few outliers. One example from each class (without noise and outliers) is shown
near the bottom (being not part of the dataset). As we can see from Table
1, DTW performance drops below 60%; ED performs much better, but all the
smoothing approaches outperform ED. The second example (Fig. 1(d)) consists
of noisy series, which do not contain any outliers. Again, one example from each
class without any noise is shown at the bottom. No warping is necessary, but
the noise seems to prevent DTW from performing as well as ED. The most
prominent differences of the two classes are the rounded versus angular minima.
When applying a smoothing filter we risk to smear out the angular edge and to
loose an important feature for class discrimination. But actually the FN and FS
filter manage to keep an accuracy close to 100%. The chosen filter does not only
denoise but delivers series where the peak positions are displaced for series from
different classes (examples of smoothed series shown in blue and pink).

4.2 Results for Data from the UCR Time Series Repository

We also report results on datasets from the UCR time series repository [6] in
Table 1. All datasets were used as they were provided, no changes were made
to them. We are interested in how much of the performance increase of elastic



Table 1. Mean accuracy and standard deviation of cross-validated 1-NN-classifier (no.
of folds in column #, for UCR data the same number of folds was used as in [9]).
Euclidean distance (ED) with: Gaussian filter (ED-FG), filter obtained from sum con-
straint (ED-FS), filter obtained from norm constraint (ED-FN).

# ED DTW ED-FG ED-FN ED-FS

Fig. 1(a) 11 0.68|0.06 1.00|0.00 0.93|0.04 0.94|0.03 0.94|0.03
Fig. 1(b) 11 1.00|0.00 0.50|0.05 0.56|0.04 0.99|0.01 0.99|0.01
Fig. 1(c) 11 0.72|0.15 0.58|0.07 0.84|0.08 0.84|0.04 0.81|0.08
Fig. 1(d) 11 0.90|0.06 0.84|0.08 0.96|0.02 0.98|0.02 0.98|0.02
Fig. 1(e) 11 0.78|0.09 0.62|0.09 0.78|0.08 0.98|0.05 0.95|0.08
Fig. 1(f) 11 0.78|0.08 0.61|0.07 0.78|0.08 0.97|0.04 0.97|0.04
ECG200 5 0.85|0.03 0.77|0.03 0.83|0.03 0.83|0.03 0.82|0.04
ECGFiveDays 32 0.86|0.04 0.80|0.04 0.92|0.03 0.90|0.06 0.90|0.04
FISH 5 0.73|0.03 0.69|0.03 0.72|0.03 0.72|0.04 0.68|0.04
GunPoint 5 0.87|0.03 0.85|0.03 0.86|0.03 0.87|0.04 0.88|0.04
OliveOil 2 0.86|0.05 0.86|0.04 0.85|0.05 0.86|0.05 0.84|0.05
Beef 2 0.46|0.07 0.46|0.07 0.45|0.07 0.44|0.07 0.45|0.07
Adiac 5 0.54|0.02 0.54|0.02 0.60|0.02 0.42|0.16 0.52|0.02
Coffee 2 0.82|0.07 0.84|0.08 0.80|0.07 0.97|0.03 0.86|0.09
50words 5 0.59|0.02 0.62|0.02 0.60|0.02 0.42|0.16 0.53|0.02
SwedishLeaf 5 0.70|0.02 0.75|0.01 0.72|0.02 0.70|0.01 0.69|0.02
CBF 12 0.94|0.02 0.99|0.00 0.98|0.01 0.99|0.01 0.99|0.01
OSULeaf 5 0.52|0.03 0.58|0.04 0.53|0.02 0.48|0.05 0.51|0.03
FaceFour 5 0.80|0.05 0.87|0.04 0.81|0.05 0.82|0.05 0.82|0.05
Lighting7 2 0.61|0.05 0.71|0.04 0.65|0.04 0.68|0.04 0.68|0.05
Lighting2 5 0.67|0.05 0.78|0.06 0.72|0.05 0.68|0.08 0.72|0.05
synth.control 5 0.86|0.02 0.99|0.00 0.99|0.00 0.96|0.01 0.96|0.00
Trace 5 0.64|0.03 0.98|0.02 0.59|0.04 0.63|0.04 0.63|0.04

measures can be achieved by filtering (when sticking to a lock-step measure). By
scanning through the Table we can see that quite often a substantial fraction
of the performance increase obtained by switching from ED to DTW is also
obtained when switching to a filter approach – in various cases the achieved
accuracy is identical. To our surprise, we can also identify cases where filtering
actually outperforms DTW (e.g. Coffee and Adiac), which is a remarkable result.

4.3 Accumulated Signals

Finally, we consider a situation where the FS/FN filter approaches perform par-
ticularly well. Many real series record a physical property reacting to some ex-
ternal input, for example, the temperature during a heating period, the rise
and fall of the water level as inlets or outlets are opened, the distance covered
when driving a car, etc. What is actually changing is some input variable (power
of heating element, valve position, throttle control), but instead of capturing
this parameter directly, some other accumulated physical property is measured
(temperature, water level, covered distance).

The following examples are artificially generated but were created to repro-
duce a real case.1 In the dataset of Fig. 1(e) all the series appear very similar
and a discrimination between the classes seems close to impossible. The series
correspond to an accumulation of some physical property, whose derivative is
very similar for all examples, but differs in the temporal location of a steep in-
crease near t = 60 (two examples from each class in red/blue). As the integrated
values are actually measured, this difference is hardly recognized in the original
series. But both filters, FS and FN, manage to transform the raw data such that
the accuracy increases dramatically (cf. Table 1).

1 Only the artificial data can be shared: public.ostfalia.de/~hoeppnef/tsfilter



For the second example in Fig. 1(f) we have a similar situation, the time series
look very similar across the two classes. One may think of a gas pedal position as
the actually controlled input (two examples from each class in red/blue), which
influences speed, but only the mileage is measured. Again, both filters manage
to identify filters that separate both classes very well. In both cases, a Gaussian
filter does not help (data is not noisy) and the elastic DTW performs worst.

5 Conclusions

When seeking for the best similarity measure for a specific application, among
equally well performing solutions we should prefer the simplest approach (Oc-
cam’s Razor). Filtering time series and measuring their Euclidean distance is
one of the most simple things one can possibly think of, however, this option
has not received much attention in the literature. Two approaches have been
proposed to derive such a filter from training data and the experimental results
have shown that they turn Euclidean distance into a much more versatile tool,
as it can adapt to specific properties of the time series. For various datasets a
substantial increase in the performance has been observed and for a specific class
of problems (discrimination of series that represent accumulating physical prop-
erties) this approach outperforms elastic measures. Together with the simplicity
of the Euclidean measure, which has a computational advantage over complex
elastic measures, this approach is a worthwhile alternative to existing measures.
How to identify an optimal filter in combination with elastic measures remains
an open question for future work.
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