
Compensation of Translational Displacement in
Time Series Clustering using Cross Correlation

Frank Höppner1 and Frank Klawonn23

1 Department of Economics
University of Applied Sciences Braunschweig/Wolfenbüttel

Robert Koch Platz 10-14, D-38440 Wolfsburg, Germany
2 Department of Computer Science

University of Applied Sciences Braunschweig/Wolfenbuettel
Salzdahlumer Str. 46/48, D-38302 Wolfenbuettel, Germany

3 Helmholtz Centre for Infection Research
Department for Cell Biology

Inhoffenstr. 7, D-38124 Braunschweig, Germany

Abstract. Although k-means clustering is often applied to time series
clustering, the underlying Euclidean distance measure is very restrictive
in comparison to the human perception of time series. A time series
and its translated copy appear dissimilar under the Euclidean distance
(because the comparison is made pointwise), whereas a human would
perceive both series as similar. As the human perception is tolerant to
translational effects, using the cross correlation distance would be a bet-
ter choice than Euclidean distance. We show how to modify a k-means
variant such that it operates correctly with the cross correlation distance.
The resulting algorithm may also be used for meaningful clustering of
time series subsequences, which delivers meaningless results in case of
Euclidean or Pearson distance.

1 Introduction

Finding typical patterns within a set of short time series by cluster analysis is a
common approach in data analysis. Short time series might arise explicitly, for
instance, as growth curves of bacteria or populations under varying conditions,
but short time series can also be extracted from one long time series in the form
of a sliding window. However, clustering such short time series derived from
sliding windows can easily lead to meaningless results [13], a problem that will
be addressed in more detail later on in this paper.

Among the applied clustering methods, k-means with Euclidean distance is
most frequently used [12]. Typically, normalization of the time series is carried
out, so that scaling of the measurements and the basic level of the time series
0 published in: Advances in Intelligent Data Analysis VIII, 8th International Sympo-

sium on Intelligent Data Analysis, IDA 2009, LNCS 5772, pp 71–82, Springer

do not have any influence. The common choice is z-score normalization. In this
case, the Euclidean distance corresponds to the Pearson correlation coefficient
up to a constant factor – thus, cluster analysis of time series with the Euclidean
distance with z-score normalized data as the distance measure is (almost) the
same as clustering with the Pearson correlation as the distance measure [2].

Although z-score normalization and the Pearson correlation coefficient rule
out differences based on scaling of the measured variable, they do not ensure a
suitable time series alignment in case the observed “patterns” do not start at
the same time (e.g., depending on the start of recording the data). In order to
group time series with a similar patterns that are shifted in time, cross correla-
tion appears to be a better choice. This paper discusses how to incorporate the
cross correlation distance into k-means clustering. We want to emphasize, that
our main purpose is not to advocate the cross correlation distance as the best
measure to compare time series1, but to show, once the decision to use cross
correlation has been made, how to modify k-means appropriately to guarantee
correct objective function-optimization.

For reasons of robustness [15], rather than simple k-means clustering we
will use fuzzy clustering which is nothing else than a reformulation of k-means
clustering with continuous membership degrees. Nevertheless, the proposed ap-
proach does not depend on fuzzy clustering and works in the same way with
crisp clustering.

2 Brief Review of Fuzzy c-Means and Noise Clustering

Given a dataset {x1, . . . , xn} ⊂ Rp, k-means as well as fuzzy c-means (FCM)
clustering [3] aims at minimizing the following objective function

f =
c∑
i=1

n∑
j=1

umijdij (1)

under the constraints

c∑
i=1

uij = 1 for all j = 1, . . . , n (2)

where ui,j is the membership degree of data object xj to cluster i and dij =
‖xj − vi‖2 denotes the squared Euclidean distance between data vector xj and
prototype vi ∈ Rp representing cluster i. While k-means assumes a crisp assign-
ment ui,j ∈ {0, 1}, its continuous counterpart allows uij ∈ [0, 1]. c is the chosen
number of clusters and m is the so-called fuzzifier, controlling (in case of fuzzy
c-means) how much clusters may overlap.

Clustering is thus considered as a nonlinear optimization problem which is
usually solved by an alternating scheme. The prototypes are chosen randomly

1 If the series are dilated, measures such as dynamic time warping may be an option.

in the beginning or by some suitable initialization strategy. Fixing the cluster
prototypes, the optimal choice for the membership degrees is given by2

uij =
1∑c

k=1

(
dij

dkj

) 1
m−1

(3)

which is used as an update equation for the membership degree. Fixing the
membership degrees, the best choice for the prototypes is

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

. (4)

The alternating scheme is repeated until the algorithm converges, i.e., no more
(or almost no) changes happen.

A very simple extension of k-means and fuzzy c-means clustering to cope
with outliers is noise clustering [7]. In the set of prototypes, an additional noise
cluster is included. All data have a fixed (usually large) distance dnoise to the
noise cluster. As soon as the distance of some data x to the nearest cluster p
comes close to dnoise, the noise cluster gains a considerable fraction of the total
membership degree, thereby reducing the influence of x with respect to p. Noise
clustering simply requires to exchange (3) by

uij =
1(

dij

dnoise

) 1
m−1

+
∑c
k=1

(
dij

dkj

) 1
m−1

(5)

and represents and effective mean to reduce the influence of noise and extract
cluster prototypes more clearly.

In the objective function (1), the number of clusters c must be known or
specified in advance. This is, of course, an unrealistic assumption. There are
various approaches to determine the number of clusters automatically (for an
overview, we refer to [4, 10]). It is also possible to find clusters step by step,
extending the idea of noise clustering [8]. A detailed discussion of methods for
determining the number of clusters is out of the scope of this paper.

3 Measuring Time Series Similarity

Suppose we have two time series r and s, consisting of T samples each r =
(r1, r2, . . . , rT) ∈ RT . The squared Euclidean distance between two time series r
and s is given by:

dE(r, s) =
T∑
t=1

(rt − st)2 (6)

2 If dij = 0 for one or more clusters, we deviate from (3) and assign xj with membership
degree 1 to the or one of the clusters with dij = 0 and choose uij = 0 for the other
clusters i.

For time series analysis, it is often recommended to normalize the time series
either globally or locally to tolerate vastly differing ranges [12]. Another promi-
nent measure for time series comparison is the Pearson correlation coefficient,
which measures the correlation % between two random variables X and Y :

%X,Y =
E[(X − µX)(Y − µY)]

σXσY
(7)

where µX denotes the mean and σX the standard deviation of X. We obtain
a value of ±1 if X and Y are perfectly (anti-) correlated and a value of ≈ 0
if they are uncorrelated. In order to use the Pearson correlation coefficient as a
distance measure for time series it is desirable to generate low distance values for
positively correlated (and thus similar) series. The Pearson distance is therefore
defined as

dP (r, s) = 1− %r,s = 1−
1
T

∑T
t=1(rt − µr)(st − µs)

σrσs
(8)

such that 0 ≤ dP (r, s) ≤ 2. One can show that k-means clustering (via Euclidean
distance) on z-score normalized time series is (almost) equivalent to k-means
clustering using the Pearson correlation distance3 [2].

Sometimes time series do not perfectly align in time and the best correspon-
dence is obtained when shifting both series against each other. Two identical
time series, one of them shifted by δ in time, may appear uncorrelated under
the Pearson coefficient. The normalized cross correlation takes this shift δ into
account and measures the Pearson correlation between r and a series s shifted
by δ:

%r,s(δ) =
1
T

∑T
t=−T (rt − µr)(st+δ − µs)

σrσs
(9)

with st = rt = 0 for t < 1 and t > T . Cross correlation can help to overcome
the missing alignment of the series by choosing δ such that the Pearson correla-
tion becomes maximal. We define the cross correlation distance dX as the best
Pearson coefficient we may achieve for an optimal lag of δ where −T ≤ δ ≤ T :

dX(r, s) = 1−max{%r,s(δ) | −∆ ≤ δ ≤ ∆} (10)

4 Compensating Translational Displacement

There are many more distance measures for comparing time series (cf. [12]),
but often the proposed distance measures are simply plugged into an existing
clustering algorithm without taking influence on the internal steps of the re-
spective algorithm. But at least for objective function-based clustering (such as
k-means or fuzzy c-means) replacing the distance measure alone is not sufficient:

3 It is almost equivalent because a normalization of the obtained prototypes is missing,
but the absence of this re-scaling is usually neglectable in terms of results.

to operate correctly, the prototype update step has to be adapted to the chosen
distance measure. The objective of this paper is therefore not to propose a new
distance measure (as Pearson correlation and cross correlation are already well-
established), but to modify the prototype update step in fuzzy c-means clustering
such that prototypes are optimized w.r.t. cross correlation rather than Euclidean
distance.

Let us denote the data series by xj , 1 ≤ j ≤ n, and the prototype series by pi,
1 ≤ i ≤ c. The cross correlation clustering (CCC) algorithm aims at minimizing
the objective function

f =
c∑
i=1

n∑
j=1

umi,jdX(pi, xj)

subject to (2). We introduce for any pair of time series (pi, xj) the lag parameter
δi,j and reformulate f as

f =
c∑
i=1

n∑
j=1

umi,j(1− %pi,xj
(δi,j))

The optimization will be carried out by alternating optimization in three steps:
(a) optimize w.r.t. δi,j assuming prototypes and memberships being constant
(Sect. 4.1), (b) optimize w.r.t. prototypes assuming lags and memberships being
constant (Sect. 4.2), and (c) optimize w.r.t. memberships assuming lags and
prototypes to be constant. The last step (c) is independent of the distance and
therefore identical to update equations (3) or (5).

4.1 Efficient calculation of the optimal lag

Calculating the cross correlation for a given value of δ is O(T) in case of discrete
time series of length T . Exploring the full range of possible δ-values is linear in T ,
too, so the overall complexity of distance estimation becomes O(T 2). This time
can be reduced to O(T log T) using the Fast Fourier Transform. (Unnormalized)
cross correlation can be interpreted as a convolution r ? s of two time series

(r ? s)(δ) =
T∑
t=1

rtsδ−t

Note that with convolution we have a factor of sδ−t whereas cross correlation
uses sδ+t. By reversing series s in time (s̄t = sT−t) we overcome this difference.

However, we need to convolve two normalized series r and s: Suppose the
first half of s correlates perfectly with the second half of r, but the remainder
of the series are random noise. If we would normalize the respective halves of r
and s individually, and calculate the correlation we would obtain a coefficient of
1.0. But if we would simply normalize r and s once beforehand, a lag of δ = T/2
would deliver a different coefficient because the mean and variance considers
also those parts of the time series that are otherwise masked out by the shift.

Therefore, the normalization has to be carried out individually for each possible
lag δ.

For notational convenience, we consider all series having indices ranging from
−T + 1 to 2T (filled up with zeroes) and denote an offset of δ by s+δ as shown
in this example for T = 4:

r = (3 1 3 5) ∈ R4

s = (1 3 5 2)
s+0 = (0 0 0 0 1 3 5 2 0 0 0 0)
s+1 = (0 0 0 0 0 1 3 5 2 0 0 0)
s−2 = (0 0 1 3 5 2 0 0 0 0 0 0)

We define χ ∈ RT as χt = 1 for any 1 ≤ t ≤ T and χt = 0 otherwise. For
instance

χ = (0 0 0 0 1 1 1 1 0 0 0 0)
χ−2 = (0 0 1 1 1 1 0 0 0 0 0 0)

The calculation of mean and standard deviation and subsequent normalization of
two series, say r and sδ, has to be carried out for the all indices t with χt ·χδt = 1.

Fortunately, this normalization can also be carried out efficiently: By means
of a series of partial sums r̂0 = r0, r̂t+1 = r̂t + rt+1 and ˆ̂r0 = r20, ˆ̂rt+1 = ˆ̂rt + r2t+1

we obtain the mean for the respective subseries ri..j from (r̂j − r̂i−1)/(j − i+ 1)
and the variance from (ˆ̂rj − ˆ̂ri−1)/(j − i+ 1)− (r̂j − r̂i−1)2/(j − i+ 1)2 due to
Var[X] = E[X2] − (E[X])2. Therefore the determination of the optimal lag δ
remains O(T log T) even in the case of normalized correlation coefficients.

Revisiting the last example, we note that series r and s correlate perfectly
for different values of δ, for instance, δ = +1 and δ = −2. In general we can
expect high values of normalized correlation for δ ≈ ±T because then only a few
values have to correlate incidentally. Therefore we introduce a bias in dX towards
preferable long matches. The distance dX is multiplied by an additional overlap

factor of T−|δi,j |
T where T − |δi,j | is the number of valid index positions shared

by both series. For small lags we thus obtain an almost unaltered correlation
coefficient whereas for large values of δ a possibly high coefficient is penalized
due to its limited relevance. In our example, the unique best lag for s and r is
now δ = 1.

4.2 Determination of the prototypes

As already mentioned, k-means clustering of z-score normalized series is (al-
most) identical to clustering via Pearson correlation, that is, the prototypes are
obtained by the weighted mean of the series that are associated to the prototype
(followed by a normalization step in case of Pearson correlation) [2]. Once the
optimal lags for cross correlation have been determined, we consider them in the
second step of alternating optimization as being constant and the cross correla-
tion distance reduces to Pearson distance for prototypes pi and the shifted data
series x+δi,j

j .

As we have seen in the previous section, any two series pi and x
+δi,j

j share
different ranges of indizes and the prototype calculation has to be carried out
pointwise (that is, index by index). Then minimization w.r.t. the prototypes leads
to the following update equations (which are a generalization of the weighted
mean to shifted series):

vi,t =
n∑
j=1

umi,j · x
+δi,j

j,t

wi,t =
n∑
j=1

umi,j · χ
+δi,j

j,t

p′i,t =
vi,t
wi,t

This calculation is not restricted to the indices t = 0 . . . T , but carried out for
the full range of t = −T +1 . . . 2T . If there are many data series xj whose second
half matches the first half of a prototype p, a higher overlap factor may possibly
be achieved next time if the prototype would be shifted appropriately. The opti-
mization w.r.t. the overlap factor is accomplished by analyzing the intermediate
result wi,t: These individual weights per index position indicate how often an
optimal match to a data series has involved this index position. Figure 1 shows
an example: the graph at the bottom shows the resulting pointwise mean (full
width of 3T) and the graph at the bottom the accumulated weight per index
position. The optimal (T -dimensional) prototype subvector of p′i is then found
at

t0 = argmaxt0=−T+1..T

T∑
t=1

wi,t0+t

Using a series of partial sums, this optimal position can be found in O(T).

Fig. 1. Example for wi,t (top) and p′i,t (bottom) for t = −T + 1 . . . 2T . To locate
the best offset t0 we identify the area of width T with the highest sum of weights
(argmaxt0=−T+1..T

PT
t=1 wi,t0+t).

4.3 Interpretation of the Noise Distance

The third step of alternating optimization involves the membership update. For
the case of correlation coefficients, the noise clustering approach is particularly

appealing. As fuzzy c-means is a partitional clustering algorithm, all data series
have to be assigned to the clusters, including those that do not correlate to any
of the prototypes (or correlate negatively). By selecting a threshold correlation
coefficient of, say, dnoise = 0.5 the noise cluster attracts the membership of poorly
correlating series, thereby avoiding a contamination of the clusters with poor
matches and preventing a blurring of the cluster prototypes. Since the correlation
coefficient has a fixed range of [0, 2], the noise distance is easily interpretable.

5 Experimental Evaluation

We demonstrate the proposed method for clustering time series as well as clus-
tering of time series subsequences (STS).

5.1 Clustering (Whole) Time Series

As a first test case, we consider the hill & valley dataset from the UCI reposi-
tory [1]: Each record represents 100 points on a two-dimensional graph. When
plotted in order the points will create either a hill (a bump in the terrain) or a
valley (a dip in the terrain). We have z-score normalized the data and applied
k-means clustering and cross correlation clustering, the results are shown in Fig.
2. As the peaks occur at different places, calculating the mean will eliminate all
the individiual peaks and ends up with a noisy prototype. Both k-means pro-
totypes converge roughly to the mean of the full data set, the two classes are
not recovered by the prototypes. In contrast, the translational displacement is
identified by the CCC algorithm. The hills and valleys are perfectly gathered in
the respective clusters.

k-means/FCM prototypes:

CCC prototypes:

#0 #1

valley 156 151
hill 150 149

#0 #1

valley 307 0
hill 0 299

Fig. 2. Results on the hill & valley dataset. On the left, four example series are shown.
The final prototypes and confusion matrix is given for k-means/FCM (top) and CCC
(bottom).

The synthetic control chart dataset (taken from [14]) is also frequently used
for the evaluation of time series clustering methods: The dataset contains 600

examples of synthetically generated control charts from six different classes: nor-
mal, cyclic, increasing trend, decreasing trend, upward shift, and downward shift
(cf. left column of Fig. 3). Although started with 6 clusters, k-means/FCM ends
up with three different prototypes only (always two prototypes are almost iden-
tical). The increasing and decreasing trend is well recovered, but these clusters
also cover many examples from the up-shift and down-shift class. As the abrupt
step in these series occurs at different points in time, k-means/FCM cannot de-
tect them as individual clusters. The same argument applies to the cyclic series
which have different phases. Again, CCC performs much better, all classes but
one are recovered by the respective clusters. The first class (normal) consists of
noise only, therefore it does not correlate to any existing cluster nor with other
noisy series. Thus, the examples from this case are distributed among the other
clusters by chance. The now superfluous sixth cluster is used to split the cyclic
cluster into two prototypes. (The “optimal” number of clusters is thus 5 for
CCC).

k-means/FCM prototypes:

CCC prototypes:

5 3 1 0 4 2

norm 12 38
cycl 10 40
incr 50
decr 50
upsh 29 21
dnsh 43 7

4 5 1 3 2 0

norm 3 5 6 6 6 16
cycl 24 26
incr 46 4
decr 50
upsh 10 40
dnsh 2 48

Fig. 3. Results on the synthetic control chart dataset. On the left, one example
from each class is shown. The final prototypes and confusion matrix is given for k-
means/FCM (top) and CCC (bottom).

The results for the cylinder-bell-funnel (CBF) dataset, taken from [14], are
shown in Fig. 4. It consists of 20 instances of three translated and dilated basic
shapes (five example series in left column of Fig. 4). In the shown example run of
k-means/FCM two of the three clusters occassionally collapsed into one proto-
type, but in general k-means/FCM performs quite well on this dataset. Although
the effects of dilation cannot be compensated by the CCC algorithm, the overall
quality of the clusters is superior. A comparison between k-means/FCM and
CCC with respect to the steepness of the flanks in the bell and funnel patterns

reveals that the CCC patterns are much closer to the original patterns while the
k-means/FCM clusters are somewhat blurred.

k-means/FCM prototypes:

CCC prototypes:

Fig. 4. Results on the cylinder-bell-funnel dataset. On the left, two examples from the
cylinder class, one from the bell and two from the funnel class are shown. The final
prototypes are presented for k-means/FCM (top) and CCC (bottom).

5.2 Clustering Subsequences of Time Series

Clustering subsequences of time series has been proposed in [6] and thereafter
been used by many authors as a tool to extract patterns from time series. The
resulting clusters, however, were of poor quality in practice [9], being very similar
to translated and dilated trigonometric functions. A deeper analysis led to the
conclusion that subsequence time series clustering is completely meaningless [13],
because the resulting trigonometric patterns appeared to be independent of the
input data.

While there are different attempts to explain this undesired effect [13, 11,
5], an intuitive explanation why subsequence clustering fails is easily given: the
input series are obtained by shifting a sliding window of fixed length over the
original series. Suppose we have a noisy series with a single bump (cf. hill and
valley dataset in Fig. 2) then due to the subsequence generation this bump will
re-occur at any location in the input series. The detection of a single cluster or
pattern would be the desired result, but k-means clustering with k = 1 would
average all the series and as the bump never repeats itself at the same spot, the
bump gets completely blurred. So the problem is caused by the translation of the
original pattern – and the CCC algorithm seems well prepared to compensate
this displacement. Therefore, it can be considered as a promising candidate to
overcome the problem of meaningless clusters in time series subsequence clus-
tering.

For the hill and valley, CBF and ECG datasets we have concatenated all the
series to a single, long time series and created a new dataset by moving a sliding
window along the resulting series. Figure 5 shows the result of k-means/FCM
and CCC in case of the hill and valley and CBF dataset, and Fig. 6 for the
ECG200 dataset. In all cases, the k-means/FCM clustering algorithm delivers
trigonometric shapes, whereas the CCC clusters correspond well to the under-
lying patterns.

k-means/FCM prototypes:

CCC prototypes:

k-means/FCM prototypes:

CCC prototypes:

Fig. 5. Clustering of time series subsequences. Left: CBF dataset, right: hill & valley
dataset.

k-means/FCM prototypes:

CCC prototypes:

3 CCC prototypes:

6 CCC prototypes:

Fig. 6. Clustering of time series subsequences. Left: ECG dataset, right: windstrength
dataset.

The CCC algorithm has also been applied to real data, namely wind strength
data measured hourly on a small island in the northern sea (shown in Fig. 6).

The sliding window was 5 days long. With real data we do not expect such dis-
tinct shapes as in the artificial datasets CBF or hill & valley, because the noise
ratio is much higher and different patterns are not separated from each other
by a period of time where the series remains constant (which makes it easy to
distinguish the pattern from the non-pattern parts). Furthermore weather phe-
nomena are cyclic in nature (consider the alternation of land and see breeze) and
we expect the discovered patterns to exhibit such a cyclic nature. Nevertheless,
the resulting prototypes clearly deviate from the sinusoidal prototypes obtained
from standard k-means/FCM clustering. For instance, the rise and fall of wind
strength have very different slopes in the various prototypes, some patterns con-
tain long periods of still air, etc. The resulting prototypes clearly differ from
those obtained from the other datasets.

6 Conclusions

The distance function used by a clustering algorithm should always be adapted
carefully with respect to the problem at hand. If time series data has to be
clustered and no dilational effects are expected, cross correlation appears to be
a promising candidate. For such a situation, we have shown how the objective
function-based clustering algorithms k-means/fuzzy c-means have to be modified
in order to operate with this distance. The prototype update step of k-means
is revised to handle the alignment of time series appropriately. The negative
influence of outliers or data series that poorly correlate to any of the clusters is
reduced by means of a noise cluster.

The resulting cross-correlation clustering (CCC) algorithm solves the prob-
lem of clustering unaligned time series. It can be applied to short time series
(whole series clustering), but also to time series subsequence (STS) clustering.
This is particularly interesting because most standard clustering algorithms fail
with STS clustering.

References

1. A. Asuncion and D. Newman. UCI machine learning repository
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

2. M. R. Berthold and F. Höppner. On clustering time series using euclidean distance
and pearson correlation. Technical report, University of Konstanz, 2008.

3. J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York, 1981.

4. J. Bezdek, J. Keller, R. Krishnapuram, and N. Pal. Fuzzy Models and Algorithms
for Pattern Recognition and Image Processing. Kluwer, Boston, 1999.

5. J. R. Chen. Useful clustering outcomes from meaningful time series clustering.
In AusDM ’07: Proceedings of the sixth Australasian conference on Data mining
and analytics, pages 101–109, Darlinghurst, Australia, Australia, 2007. Australian
Computer Society, Inc.

6. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from
time series. In Proc. of the 4th ACM SIGKDD Int. Conf. on Knowl. Discovery
and Data Mining, pages 16–22. AAAI Press, 1998.

7. R. Davé. Characterization and detection of noise in clustering. Pattern Recognition
Letters, 12:657–664, 1991.

8. O. Georgieva and F. Klawonn. Dynamic data assigning assessment clustering of
streaming data. Applied Soft Computing, 8:1305–1313, 2008.

9. F. Höppner. Time series abstraction methods – a survey. In Proceedings GI
Jahrestagung Informatik, Workshop on Knowl. Discovery in Databases, Lecture
Notes in Informatics, pages 777–786, Dortmund, Germany, Sept. 2002.

10. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy cluster analysis. Wiley,
Chichester, 1999.

11. T. Ide. Why does subsequence time-series clustering produce sine waves? In Proc.
Int. Conf. Knowledge Discovery in Databases (PKDD), volume 4213 of LNCS,
pages 211–222, 2006.

12. E. Keogh and S. Kasetty. On the need for time series data mining benchmarks:
A survey and empirical demonstration. Data Mining and Knowledge Discovery,
7(4):349–371, 2003.

13. E. Keogh, J. Lin, and W. Truppel. Clustering of time series subsequences is mean-
ingless: implications for previous and future research. In Proc. IEEE Int Conf on
Data Mining (ICDM), pages 115– 122, 2003.

14. E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The UCR time series classi-
fication/clustering homepage www.cs.ucr.edu/∼eamonn/time series data/, 2006.

15. F. Klawonn. Fuzzy clustering: Insights and a new approach. Mathware and Soft
Computing, 11:125–142, 2004.

