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Abstract. Observing a binary feature over a period of time yields a se-
quence of observation intervals. To ease the access to continuous features
(like time series), they are often broken down into attributed intervals,
such that the attribute describes the series’ behaviour within the seg-
ment (e.g. increasing, high-value, highly convex, etc.). In both cases, we
obtain a sequence of interval data, in which temporal patterns and rules
can be identified. A temporal pattern is defined as a set of labeled in-
tervals together with their interval relationships described in terms of
Allen’s interval logic. In this paper, we consider the evaluation of such
rules in order to find the most informative rules. We discuss rule seman-
tics and outline deficiencies of the previously used rule evaluation. We
apply the J-measure to rules with a modified semantics in order to better
cope with different lengths of the temporal patterns. We also consider
the problem of specializing temporal rules by additional attributes of the
state intervals.

1 Introduction

Most of the data analysis methods assume static data, that is, they do not
consider time explicitly. The value of attributes is provided for a single point in
time, like “patient A has disease B”. If we observe the attributes over a period
of time, we have to attach a time interval in which the attribute holds, for
example “patient A has had disease B from 1%t to 7" of July”. It may happen
that patient A gets disease B a second time, therefore sequences of labeled state
intervals (state sequences) can be viewed as a natural generalization of static
attributes to time-varying domains. Compared to static data, little work has
been done to analyse interval data.

Even in continuous domains discretization into intervals can be helpful. As an
example, the problem of finding common characteristics of multiple time series
or different parts of the same series requires a notion of similarity. If a process
is subject to variation in time (translation or dilation), those measures used
traditionally for estimating similarity (e.g. pointwise Euclidean norm) will fail
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in providing useful hints about the time series similarity in terms of the cognitive
perception of a human. This problem has been addressed by many authors in the
literature [1, 4, 6]. In [8] we have used qualitative descriptions to divide up the
time series in small segments (like increasing, high-value, convexly decreasing,
etc.), each of it easy to grasp and understand by the human. Then, matching of
time series reduces to the identification of patterns in interval sequences.

Motivated by association rule mining [2], and more specific the discovery of
frequent episodes in event sequences [10], we have proposed a method to discover
frequent temporal patterns from a single state sequence in [8]. From the patterns
rules can be formed that identify dependencies between such patterns. In this
paper, we reconsider rule semantics and the problem of rule evaluation. We use
the J-measure [11] to rank rules by their information content. And we discuss
how to specialize rules by incorporating additional information about the state
intervals to further improve the rules.

The outline of the paper is as follows: In Sect. 2 we define our notion of a state
sequence and temporal patterns. We briefly summarize the process of mining
frequent patterns in Sect. 3. We discuss the problems in measuring how often
a pattern occurs in a sequence in section 4 and concentrate on rule evaluation
in section 5. Section 6 deals with specializing rules to increase their usefuleness
(information content).

2 Temporal Patterns in State Sequences

Let S denote the set of all possible trends, properties, or states that we want
to distinguish. A state s € S holds during a period of time [b, f) where b and f
denote the initial point in time when we enter the state and the final point in
time when the state no longer holds. A state sequence on § is a series of triples
defining state intervals
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where b; < b;y1 and b; < f; holds. We do not require that one state interval
has ended before another state interval starts. This enables us to mix up several
state sequences (possibly obtained from different sources) into a single state
sequences.

We use Allen’s temporal interval logic [3] to describe the relation between
state intervals. For any pair of intervals we have a set Z of 13 possible relation-
ships. For example, we say “A meets B” if interval A terminates at the same
point in time at which B starts. The inverse relationship is “B is-met-by A”.
Given n state intervals (b;, s;, fi), 1 < i < n, we can capture their relative po-
sitions to each other by an n x n matrix R whose elements R[i, j] describe the
relationship between state interval ¢ and j. As an example, consider the state
sequence in Fig. 1. Obviously state A is always followed by B. And the lag be-
tween A and B is covered by state C. Below the state interval sequence both of
these patterns are written as a matrix of interval relations. Formally, a temporal
pattern P of size n is defined by a pair (s, R), where s : {1,..,n} — S maps index



1 to the corresponding state, and R € Z™*" denotes the relationship between
[b;, fi) and [bj, f;)!. By dim(P) we denote the dimension (number n of intervals)
of the pattern P. If dim(P) = k, we say that P is a k-pattern. Of course, many
sets of state intervals map to the same temporal pattern. We say that the set
of intervals {(b;, s;, f;) |1 <4 < n} is an instance of its temporal pattern (s, R).
If we remove some states (and the corresponding relationships) from a pattern,
we obtain a subpattern of the original pattern.

interval sequence: temporal relations:
c D c _F c | A B |ABC
A|l=b Al=bo
A B A B A E B Bla = Bla =io
- c|io o =
time

(abbreviations: a=after, b=before, o=overlaps, io=is—overlapped-by)

Fig. 1. Example for state interval patterns expressed as temporal relationships.

3 Pattern Discovery

In this section we briefly review the process of pattern discovery and rule gener-
ation, which is on a coarse view roughly the same with many kinds of patterns.
For a more detailed treatment, see [2, 10].

As already mentioned, we intend to search for frequent temporal patterns.
The support of a pattern denotes how often a pattern occurs. Postponing the
exact definition of support for the moment, a pattern is called frequent, if its
support exceeds a threshold supp,,;,- To find all frequent patterns we start in
a first database pass with the estimation of the support of every single state
(also called candidate 1-patterns). After the kth run, we remove all candidates
that have missed the minimum support and create out of the remaining frequent
k-patterns a set of candidate (k+ 1)-patterns whose support will be estimated in
the next pass. This procedure is repeated until no more frequent patterns can be
found. The fact that the support of a pattern is always less than or equal to the
support of any of its subpatterns guarantees that we do not miss any frequent
patterns.

After having determined all frequent patterns, we can construct rules X — Y

from every pair (X,Y") of frequent patterns where X is a subpattern of Y. If the

confidence of the rule conf(4A — B) = % is greater than a minimal

confidence, the rule is printed as an interesting candidate for an important rule.

The space of temporal patterns is even larger than the space of itemsets in
association rule mining [2] or episodes in event sequences [10], since for every pair
of objects (intervals) we have to maintain a number of possible relationships.

! To determine the interval relationships we assume closed intervals [b;, f;]



Thus, efficient pruning techniques are a must to overcome the combinatorial
explosion of possible patterns. We refer the reader to [8] for the details of the
frequent pattern discovery process.

4 Counting Temporal Patterns in State Series

What is a suitable definition of support in the context of temporal patterns?
Perhaps the most intuitive definition is the following: The support of a temporal
pattern is the number of temporal patterns in the state series. Let us examine
this definition in the context of the following example:

b
Bla =10

b
b with probability p (1)
m

We call the pattern in the premise the premise pattern P and the pattern in
the conclusion the rule pattern R. The rule pattern also comprises the premise
pattern. If we remove the premise from the rule pattern we obtain the conclusion
pattern C. In (1), the pattern is depicted below the relation matrix (a=after,
b=before, m=meets, im=is-met-by).

How often does the pattern in the conclusion occur in the state series in Fig.
2(a)? We can easily find 3 occurrences as shown in Fig. 2(b). The remaining
(unused) states do not form a 4** pattern. How often does the premise pattern
occur? By pairing states (1,4), (2,6), (3,7), etc. we obtain a total number of 7.
So we have p = % This may correspond to our intuitive understanding of the
rule, but we can improve p to % when using the rule pattern assignment in Fig.
2(c). The latter assignment is perhaps less intuitive than the first, because the
pattern’s extension in time has increased. But now we have a state series that is
assembled completely out of rule patterns, there is no superfluous state. Then,
would it not be more natural to have a rule probability near 1 instead of %?

The purpose of the example is to alert the reader that the rule semantics is not
that clear as might be expected. Furthermore, determining the maximum number
of pattern occurrences is a complex task and does not necessarily correspond to
our intuitive counting. We therefore define the total time in which (one or more)
instances of the patterns can be observed in a sliding window of width w as the
support of the pattern. If we divide the support of a pattern by the length of the
state sequence plus the window width w we obtain the relative frequency p of
the pattern: If we randomly select a window position we can observe the pattern
with probability p.

We note in passing, that the rule probability p = % is obtained by using the
concept of minimal occurrences [10], as used by Mannila et al. for the discovery of
frequent episodes in event sequences. An instance of a pattern P in a time interval
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Fig. 2. Counting the occurrences of temporal patterns. (States with different labels (A
and B) are drawn on different levels. Note that the pattern of interest (1) requires a
meets relation in the conclusion.)

[to, t3] is a minimal occurrence, if there is no [t1,t2] C [to,t3] such that there is
also an instance of P within [t1,%2]. We do not follow this idea, since we consider
the rule discovery to be less robust when using minimal occurrences. Consider a
pattern “A before B”, where the length of the intervals is characteristic for the
pattern. If the interval sequence is noisy, that is, there may be additional short
B intervals in the gap of the original pattern, the minimal occurrence of A and
noisy B would prevent the detection of A and original B. Rule specialization as
we will discuss in Sect. 6 would not have a chance to recover the original pattern.
Such a situation can easily occur in an automatically generated state sequence
which describes the local trend of a time series, where noise in the time series
will cause noise in the trend sequence.

5 Rule Evaluation

Let us consider the case when two patterns perfectly correlate in a state sequence.
Using again our example rule (1), let us assume that whenever we observe “A
before B”, we find another two states A and B such that in combination they
form the rule pattern in (1). Usually, the support and confidence value of the
rule are used to decide about its usefulness [2]. If a sequence consists of rule
patterns only, we should expect a confidence value near 1, however, this is not
necessarily the case.

5.1 Modified Rule Semantics

There are two possible reasons for a low rule probability (or confidence). The
greater the (temporal) extent of the pattern, the lesser the probability of ob-
serving the pattern in the sliding window. Consequently, the confidence of a rule
decreases as the extent of the rule pattern increases. Secondly, if there are more
premise patterns and less rule patterns, rule confidence also decreases. The latter



is what we usually associate with rule confidence, whereas the first seems a bit
counterintuitive. To reduce the effect of pattern extension, we define a different
rule semantics: Given a randomly selected sliding window that contains an in-
stance of the premise pattern, then with probability p this window overlaps a
sliding window that contains the rule pattern. Loosely speaking, the effect of this
redefinition is an increase in the support of the rule, since we substitute “number
of windows that contain rule pattern” by “number of windows that contain the
premise and overlap a window with a rule pattern”.

@ time (0) time
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Fig. 3. Support sets of “A” and “A before B”, determined by the sliding window
positions when the pattern is observed for the first time (dotted window position) and
for the last time (dashed window position).

Figure 3(a) illustrates the problem. We consider the premise pattern P =“A”,
the conclusion pattern C' =“B”, and the rule pattern R =“A before B”, w de-
notes the window width. For any pattern @, let Sg be the support set of a pattern
@, that is, a set of sliding window positions for which @ is observable. Then we
have supp(Q) = card(Sg) (cardinality). In the example we have supp(P) =
card([a;, a, +w]) and supp(C) = card([b;, b, + w]). Here supp(R) = supp(PNC)
holds and hence supp(R) = card(S4 N Sg) = card([bi, a, + w]). Thus, defining
A :=b; — a, < w and denoting the length of A by l4, the rule confidence is

_card(SaNSp) _ a+w—-b w-A
conf(A — A before B) = ard(Sy) e tw—a - wils

Obviously, as the gap (A) between A and B increases, the confidence approaches
zero. Now for any pattern @, let Sg = Sq U {t —w|t € Sp}. S, can be
interpreted as the support of a pseudo-pattern “pattern Q is visible or will be
visible within time w” . If we now replace the cardinality of “windows that contain
rule patterns” by the cardinality of “windows that contain premise and overlap
a window that contains rule patterns” as required by the new semantics, we
obtain?

card(SaNSE)  ar+w—gq
card(S4)  ar+w-—q

conf(A — A before B) = =1

2 Here we have Sg = Sa N Sp and therefore S, N Sp =S54 NS5 NSs=S5NSa.



Thus, as long as we can see A and the beginning of B within the sliding window,
we obtain a confidence value of 1, no matter how far A and B are apart. Cases
where no conclusion pattern occurs are not affected by this modification (see Fig.
3(b)). Thus, this modification helps to recover the usual semantics of confidence
values.

The sets Sp have been determined while searching for frequent patterns
anyway [8], they can be handled easily as sorted lists of intervals. Therefore the
operations discussed above can be implemented efficiently without looking at
the data again: We replace every interval [I,r] € Sq by [l — w,r] to obtain Sg,.
In general, rule confidence is then given by

card(Sp N Sg)

conf(P = R) = card(Sp)

5.2 Information Content of a Rule

Usually one obtains a large number of frequent patterns and thus a large number
of rules. Considerable efforts have been undertaken in the literature to make the
vast amount of rules more amenable. We use the J-measure [11] to rank the
rule by their information content. It is considered as one of the most promising
measures for rule evaluation [5], however, it is still not widely used. Given a rule
“f Y =y then X = z” on random variables X and Y, the J-measure compares
the a priori distribution of X with the a posteriori distribution of X given that
Y = y. In the context of a rule, we are only interested in two cases, given that
Y = y, either the rule was right (X = z) or not (X = Z), that is, we only
consider the distribution of X over {z,Z}. Then, the relative information

JXY =)= X Prx =afy = ptog, (25 =0

ze{z,z}

yields the instantaneous information that Y = y provides about X (j is also
known as the Kullbach-Leibler distance or cross-entropy). When applying the
rule multiple times, on average we have the information J(X|Y =y) = Pr(Y =
y) - j(X|Y =y). The value of J is bounded by ~ 0.53 bit.

In our context, the random variable Y indicates whether the premise occurred
in the sliding window W or not. The probability Pr(P € W) when choosing a
sliding window position at random is supp(y)/T where T is the support of the
whole sequence. The random variable X indicates whether the rule pattern has
occurred. The a priori probability for R € W is supp(Sg)/T, the a posteriori
probability is given by supp(Sg)/supp(Sp) = conf(P — R). When using the
modified rule semantics, we have to replace Sg by SR N Sp.

5.3 From Rules to Correlations

We have investigated rules P — R so far, what about C — R (where C is the
conclusion pattern that is determined uniquely by P and R)? If P — R and



C — R hold, then we have a correlation or equivalence P <g C, that is, the
premise is an indication for the conclusion and also vice versa. We can easily
extend the rule evaluation to consider correlations. Then, Y denotes a random
variable that indicates whether the conclusion has been found in the sliding
window (or in a window overlapped by it, if we use modified rule semantics),
thus Pr(C' € W) = card(Sc) (or card(S)). The random variable X is left
unchanged. So we obtain two J-values for P —+ R and C' — R; if one of them
is much higher than the other, we can print the rule P — R or C' — R, if both
values are similar we print P < C.

6 Rule Specialisation

The rule evaluation considers only the interval relationships of temporal patterns,
but often there is additional information available for each interval. For example,
we have not yet evaluated the length of the intervals, or the size of a gap between
two states, etc. These lengths are always available when dealing with interval
data, but there might be additional information attached to the intervals. For
instance, if the intervals denotes ingredients in a chemical process, an additional
attribute might denote the intensity or dose of the admixture. A rule that seems
interesting to an expert might not have reached the desired confidence value
or information content, unless this additional information is incorporated into
the rule. For instance, the desired product quality might be achieved only if
admixture D has been supplemented to the process at a dose greater than z.
In this section we consider the problem of improving rule confidence using such
additional state information.

Given a rule P — R with temporal patterns P and R and a real-valued
attribute a attached to one of the states used in R. Besides some notational
differences, we do not make a distinction between attributes of states that occur
in the premise (e.g. “if A A length(A) < 3 then A before B”) or in the conclu-
sion (e.g. “if A then A before B A length(B) > 1”). Potentially it is possible to
improve the information content of a rule in both cases. For notational conve-
nience, however, let us consider the first case, where we examine an attribute of
a state in the premise. Now, we run once through the database and store for each
instance 4 of the rule pattern a triple (a;, IZ.(P), I i(R)), where a; denotes the value

of the attribute, IZ-(P) the support interval of the premise instance, and Ii(R) the
support interval of the rule instance. For all instances ¢ of the premise pattern
that cannot be completed to a rule pattern we store (a;, I, z.(P), IZ-(R) = (). In con-
trast to the frequent pattern mining process, now we are not satisfied if we know
that there is an occurrence of the rule pattern in the sliding window, but this
time we are interested in all occurrences with all possible state combinations.
This is computationally more expensive, therefore only selected rules should be
considered (e.g., best 100 rules without specialisation).

Next, we have to find a threshold a such that the J-value of either P A (a >
a) = Ror PA(a < &) — R is maximized. This can be accomplished by sweeping
o once through [min; a;, max; a;] and calculating the J-value each time. When J



becomes maximal, we have found the « value that yields the most informative
rule. Having done this for all available attributes, we specialise the rule with the
most informative attribute. Then, we can refine the specialised rule again, or use
the bounds on the J-value [11] to stop when no improvement is possible.
Sweeping through the range of possible attribute values is done incrementally.
Let us assume that the indices are chosen such that a;11 > a;, that is, we sort by
attribute values. Furthermore, without loss of generality we assume that for no ¢

we have a; 1 = a;. If there are i and j with a; = a;, we substitute (a;, Ii(P), Ii(R))

and (aj,IJ(-P),I;R)) by (ai,I](P) U IZ.(P),IJ(R) U IZ-(R)). Now, we run once through
the indices and set o = ‘”% We start with empty sets for the support of the
rule pattern Sg and premise pattern Sp. After the incrementation of ¢ and a, we
incrementally update Sp to Sp U Il.(P) and Sg to Sp U Iz.(R). Given the support
sets Sp and Sg we can now calculate the J-value for this a. If we want to check
for correlations rather than just rules, we additionally maintain the support of
the conclusion pattern S¢.

7 Example

We have applied our technique to various real data sets (weather data, music)
that would require more detailed background information in order to understand
the results. Due to the lack of space, we consider only a small artificial exam-
ple. We have generated a test data set where we have randomly toggled three
states A, B, and C at discrete time points in {1,2,...,9000} with probability
0.2, yielding a sequence with 2838 states. Whenever we have encountered a sit-
uation where only A is active during the sequence generation, we generate with
probability 0.3 a 4-pattern A meets B, B before C, and C overlaps a second
B instance. The length and gaps in the pattern were chosen randomly out of
{1,2,3}. We have executed the pattern discovery (supp,,;, = 2%) and rule gen-
eration process several times, using the old and new rule semantics and different
sliding window widths (8,10,12). We consider the artificially embedded pattern
and any subpattern consisting of at least 3 states as interesting. As expected,
using the old rule semantics the confidence value is not very helpful in finding
interesting rules. Most of the top-ranking rules were not interesting. Among the
top 10 rules, we have found 1/2/3 interesting patterns for w = 8/10/12, they all
had 2-3 states in the premise and 1 in the conclusion pattern. The J-measure
yields much better results, even when using the old semantics. When using the
modified semantics, we obtain higher confidence values and J-values. The top 5
rules rated by J-values were identical, regardless of the window width, among
them all 3 possible rules with 4 states. It is interesting to note that the rule
A — BCB ranges among the top 5 although its confidence value is still clearly
below 0.5 (and the best interesting rule has a confidence of 0.96).

In a second dataset, we have created the described pattern whenever the
length of the A interval is greater or equal to 5. For this dataset the rule “AB —
CB” obtained conf = 0.75 and J = 0.26 bit. We have searched for a threshold
a to specialize the rule with “length(A) > o”. When comparing the rules with



different « values we obtain a single rule where J becomes maximal with the
correct value (o = 5). The confidence increases to 0.85 and the information
content to 0.34 bit. The confidence value for @ = 5 represents only a local
maximum, beyond a = 8 confidence increases monotonically with . The run
time for the last example was slightly above 1 minute on a Mobile Pentium II,
64 MB Linux computer (40s pattern discovery (see also [8]); 28s rule evaluation
(naive implementation); 2s rule specialization).

8 Conclusion

Compared to static data, the development of attributes over time is much more
difficult to understand by a human. Rather than explaining the temporal pro-
cess as a whole, which is usually very difficult or even impossible, finding local
rules or correlations between temporal patterns can help a human to understand
interdependencies and to develop a mental model of the data [9]. In this paper,
we have discussed means to find out the most promising temporal rules, which
have been generated out of a set of frequent patterns in a state sequence [8]
In combination, modified rule semantics, J-measure, and rule specialisation are
much better suited to rank informative rules than support and confidence values
alone.
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