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Abstract. In this paper several time series abstraction methods
are reviewed with respect to their applicability in the framework of
knowledge discovery (KDD) and data mining (DM). We discuss the
demands of KDD/DM (noise, robustness) and show many widely
used methods do not satisfy them, because they are single-scale
methods. With multiscale approaches, however, the drawbacks of the
single-scale methods can be addressed explicitly.

1 Introduction

In knowledge discovery from time series the goal is to detect interest-
ing patterns in the series that may help a human to better recognize
the regularities in the observed variables and thereby improve the
understanding of the system. Computer programs are very good in
number crunching, but knowledge arises only in the head of a hu-
man. Ideally, knowledge discovery algorithms therefore use time se-
ries representations that are close to those that are used by a human.

If a human is interested in gaining insight in some time series data
not tabular but graphical representations are used. The impressive
pattern recognition capabilities of the human brain help to establish
connections between different time series or different parts of a sin-
gle time series on the basis of their visual appearance. This is a rea-
sonable approach, not only because humans are very good in visual
pattern recognition, but also because (changing) trends in the output
variables reflect (changes in) the internal state of system.

Many machine learning algorithms (like decision trees), however,
have been designed to work with numerical feature vectors. Using
subsampling such methods can be applied to time series data to in-
duce classification trees, however, the results obtained from such an
approach are usually not easily accessible by a human because the
tabular representation of a time series rather than the visual percep-
tion of its profile is addressed. Besides that, frequently observed ef-
fects like translation and dilation cannot be handled by such an ap-
proach.

Thus, the raw data is converted into a more abstract representation
before it is further processed (see e.g. [11, 26, 16]), and in this paper
we give a survey of time series abstraction methods that have been
used in the literature. Quite often the abstraction process is discussed
only briefly in a short paragraph on preprocessing, but it is a very im-
portant step because even the best KDD method cannot recover rela-
tions in the data that have been falsified or biased during preprocess-
ing. Abstraction or summarization corresponds to a segmentation of
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the time series and a characterization of the data within the segment.
By a segment of a signal we understand a sequence of measurements
being supported by the largest contiguous interval over which a cer-
tain property holds (e.g. increasing, below a certain threshold, etc.).
Thus, the result of time series abstraction is a sequence of intervals
where each interval is labeled with discrete and/or numeric attributes.

There is a close relationship to traditional function approximation
techniques, because the elements of, let us say, a piecewise linear
approximation can be used to define an abstraction. In function ap-
proximation it is quite common to compare the methods via their
approximation quality. We are not interested in such a purely quanti-
tative approach here, because the desire for high precision alone does
not appropriately reflect the danger of overfitting. While a human is
quite good in “guessing” what is noise and what is actually trend in-
formation, this subjective judgement is extremly difficult to simulate
in a technical system. And in KDD we do not know the amount of
noise nor if the noise is constant over time.

The following questions should be asked when selecting a time
series abstraction method: Are the abstracted features actually sup-
ported by the data? How does the method distinguish features from
noise? Are the elements of an abstraction easily interpretable by a
human? Is the average length of the segments reasonably large (to
get some compression effect from summarization)? If we have more
than one method available providing satisfying answers, then we may
choose the one with the better approximation quality.

2 Overview

We assume that we examine well-behaving signals only, we suppose
that the signals are twice differentiable almost everywhere (we allow
only for a small (finite) number of discontinuities in the signal or its
first few derivatives). Besides that, we also assume that the signals
have a finite number of extrema and inflection points and that the
sampling rate has been chosen sufficiently high to detect them.

The problem of time series partitioning can be considered either as
a supervised or unsupervised task. It can be supervised in the sense
that the attributes of interest are defined a priori and we have to assign
labels from this given set to portions of the time series. Thus, in this
deductive approach, we know in advance for what kind of features
we are looking for. On the other hand, we can perform unsupervised
partitioning in the sense that no such set of labels is given in advance
and we have to learn this set from data, too.

Inductive Approach. In the inductive approach, similar parts in
the time series can be identified via clustering [14, 8, 13]. Cluster-



ing aims at partitioning data entities such that similar data objects
belong to the same group and dissimilar data objects belong to dif-
ferent groups. If we think of small portions of time series as data ob-
jects, every cluster can be considered as an inductively derived label
for a group of similar portions. The crucial point in clustering is the
used notion of (dis)similarity, which is implemented by means of a
distance measure. A zero distance indicates a perfect match between
two subseries, a large value indicates dissimilarity. Note that in this
approach noise is not handled explicitly. Using an appropriate cluster
representation the clusters themselves carry some information about
the variance in the associated data.

Usually, the data volume in the inductive approach is quite high,
therefore the clustering algorithms have to be effective. There is a
variety of clustering algorithms in the literature that have been de-
signed explicitly to cope with larger data sets, e.g. [9, 30, 5, 12]. We
will see in section 3 that the number of clusters usually has to be
chosen quite large (or the average number of data per cluster quite
low), which might be a reason that very simple greedy algorithms
have also been reported to be successful [7].

Deductive Approach. In the deductive approach we fix the shapes
of interest in advance. Among the most frequently used shape de-
scriptions for time series in technical systems are terms like “linearly
increasing”, “convexly decreasing”, or “constant” etc. There are 7
basic shapes for describing local trends in a function
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but not for a whole segment. For time intervals of non-zero length
we thus obtain the following basic shape descriptors: “constant”,
“linearly increasing”, “linearly decreasing”, “convexly increasing”,
“convexly decreasing”, “concavely increasing”, and “concavely de-
creasing”. What makes this representation attractive is that “a de-
scription that characterizes a signal by its extrema and those of the
first few derivatives is a qualitative description of exactly the kind
we were taught to use in elementary calculus to sketch a function”
[29]. If we use these basic shapes to describe the time series locally,
breaking down the series into subsequences is theoretically straight-
forward: Via differencing we obtain estimates of the first and second
derivative. Whenever one of the derivatives falls into a different sub-
set of the partition �	��
���������������	������������� than its predecessor, we
introduce a new segment. However, in almost every application the
data is noisy. Noise makes the series oscillate around the true profile,
thereby introducing a large number of tiny segments and local ex-
trema. The main problem when using this approach is therefore how
to compensate the influence of noise or, putting it differently, how to
distinguish noise from significant features.

There are at least two different ways how to proceed in the de-
ductive approach: (a) We can use function approximation techniques
and extract the description of the time series from the approximating
function instead of the original series. In this approach the problem
of handling noise is handed over to the applied regression technique.
(b) We can use appropriate smoothing techniques to get more robust
estimates of the first and second derivative and may use the partition
����
����
������� !
��	�"�$#��$�%�	�&����� . Then, handling noise correctly corre-
sponds to selecting an appropriate smoothing filter.

3 Inductive Segmentation

In the inductive approach we have to fix (a) the representation of time
series (or portions of it via a sliding window) and (b) the distance

between between time series. We consider four approaches

a) Clustering of Embedded Subsequences: In this approach a win-
dow of constant width is slid along the series. The content of each
window is transformed into a tuple of observations. If data has
been measured uniformly over time, this technique embeds a con-
stant number of ' consecutive values into an ' -dimensional vector
of observations. This approach is very popular and used by many
authors [24, 21, 15, 7].

b) Clustering of Embedded Models: Alternatively, a more abstract
representation of the series rather than the raw data can be em-
bedded in a vector. For instance ' segments of a piecewise linear
representation can be characterized by a (�' vector consisting of
slope and length of each segment. Then, clustering is performed
on these “embedded models” rather than the embedded series. We
are not aware of any reference using this approach.

c) Clustering by Warping Costs: If other effects like vertical scaling
are not significant, dynamic time-warping (DTW) can be used to
locally shrink and stretch the time axis such that a point-to-point
similarity of two time series is minimized [23, 4]. For any pair of
series DTW yields some warping costs that can be considered as
a distance between the series.

d) Clustering using Markov Models: Another approach is to learn
a hidden Markov model (HMM) or Markov chain for each subse-
quence [28, 25] and to cluster via the resulting probability models.

In (a) and (b) usually distance metrics like Euclidean distance are
used, which yield low distances only if one segment is almost an
exact copy of the other. However, the shape of the subsequence is
the main factor in perceived similarity rather than an exact match
of the values. Two series may have the same shape although they
have different baselines, for instance. Therefore, the attribute vec-
tor may be transformed, such as subtraction of the segment mean
(to eliminate baseline effects) or normalization (zero mean and unit
variance). Despite such transformation in our experiments the results
were not very promising, since the distance measure is not able to
assign low distance values to dilated window contents, resulting in
very small clusters. Furthermore, only a fixed sliding window width
is used to measure the similarity and quite different clusters may
be found when using other window widths. When using compara-
tively few clusters the resulting prototypes often appear very much
like dilated and translated trigonometric functions with different am-
plitudes. Thus, similar results can be obtained by using the first few
Fourier coefficients to characterize the window content, such that we
can benefit from a reduced data dimension from ' to 3 or 4 as pro-
posed in [1].

With respect to the inadequate handling of dilation, it seems more
promising to embed a more abstract representation of the series as
proposed in (b) rather than the raw data. The advantage of this ap-
proach is that it handles translation and dilation of the time series to
some extent: A deviation of a prototype in the even components cor-
responds to a local shortening or lengthening of the profile, a devia-
tion in an odd component corresponds to a scaling in the vertical axis.
By using gradient information rather than absolute values we do not
only compensate for different baselines in the segments, but address
local differences in shape: If two segments distinguish only in a dif-
ferent slope at the beginning, but then behave structurally identical,
their pointwise distance will be very high since the initial difference
in slope separated both profiles spatially. However, the pointwise dis-
tance of their derivatives yields much smaller distance values, since
the derivatives differ only at the beginning. Compared to the embed-
ding of raw data, with embedding higher representations we have



obtained much better cluster prototypes.
Translation and dilation can be handled very well by DTW tech-

niques (c), which are especially suited to compare series of different
length. However, vertical distortions in the function values tend to
be compensated by time warping even if there is no temporal dila-
tion present. Technique (c) does not transform a series into another
representation, but defines an ' � ' symmetric dissimilarity matrix,
where ' is the number of series. Here, relational rather than parti-
tional clustering algorithms have to be applied. But the space and
time complexity of such algorithms is usually larger and if a window
is slid along a very long time series a very large dissimilarity matrix
has to be processed. Therefore it is a good idea to use subsampling
to reduce run-time requirements as in [20].

HMMs assume that there is a fixed number of hidden (unobserv-
able) states in which a system may currently be. The output of the
system depends solely on the current state. Learning an HMM corre-
sponds to estimating the state transition probabilities and state output
probabilities via likelihood maximization. While this is a promising
approach for long sequences, it may fail with short subsequences
(windows) since they contain only little data to learn the high number
of HMM parameters robustly. The state transition probabilities indi-
rectly correspond to state durations and thus can be used to model
time dilation. HMMs are used in speech recognition, replacing DTW
techniques that have been used in this domain before the advent of
HMMs. Instead of HMMs Markov chains can be learned from each
subsequence – since Markov chains are simpler than HMMs (less pa-
rameters, no hidden states) they can also be learned from short sub-
sequences. As with DTW it is possible to learn models from series of
different lengths. By calculating the probability of being generated
by the model for every series and estimated model, a dissimilarity
matrix can be defined just as with the DTW approach. Difficulties
arise from the fact that one has to select a priori a single model struc-
ture that is adequate for all clusters (same structure and number of
hidden states).

Techniques (c) and (d) are computationally more expensive than
(a) and (b). With respect to interpretability, all methods come up
with a “codebook” of representative shapes, which is easily acces-
sible only if the number of prototypes is moderately large.

4 Deductive Segmentation

In the deductive approach we seek for a segmentation at the zero-
crossings of the first few derivatives. Noise introduces many such
zero-crossings and therefore has to be eliminated in advance, either
by function approximation or smoothing. There is a variety of differ-
ent methods for function approximation or regression (see e.g. [6]).
Having approximated the data by one of these methods we want to
use the fitted function to extract shape information. For this approach
making sense we require the following property: Any shape feature
extracted from the approximating function must be supported by the
original data. We will see that this property does not hold for most
techniques.

The approximation can be either uniform (the approximating func-
tion
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deviates from the original values by no more than a certain

��� � ) or least-squared fitted (sum of approximation errors is min-
imized but local error is not bounded in advance). In principle it is
a good idea to require uniform approximation, since then the origi-
nal data is approximated equally well over the complete range. Opti-
mal uniform approximation can be quite complex, but there are also
greedy, non-optimal variants. Figure 1 shows the results of an algo-
rithm proposed in [27]. If � has been chosen appropriately, the results

are very good (example in the middle). From left to right we have in-
creased the noise but left � unchanged. Now, uniform approximation
yields different representations for the data, although the underly-
ing function remained the same. If � is chosen too high (left exam-
ple), the approximation gets somewhat sloppy1 , if � is chosen too
low (right example), the noise gets modelled. Ideally, we would like
to get identical representations. In many knowledge discovery appli-
cations we cannot be sure that the amount of noise does not change
over time.
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Figure 1. Uniform approximation (constant � ).

Instead of � usually the number of segments � has to be provided
with least-squares methods. If ����� is fixed then least squares meth-
ods would yield (almost) identical results in figure 1, however, in
arbitrary situations determining an optimal � is not easier than fix-
ing � . Heuristic approaches can be used to determine whether the
achieved approximation with some � is sufficiently good (again via
some threshold), and some additional segments are inserted if that
is not yet the case. Such an iterative refinement can also be imple-
mented in a hierarchical (bottom-up or top-down) fashion.

Fourier and Wavelet analysis [19] can also be used to approximate
the series. For noise elimination usually small coefficients of basis
functions are set to zero (again via some a priori fixed threshold). Due
to the locality of the wavelets, deleting coefficients does not affect
the whole reconstructed time series as it is the case with the (co)sine
basis functions in Fourier analysis. But since we are interested in de-
termining the zero crossings in the time series, the wavelets should
be smooth (unlike the Haar or Daubechies-4 wavelet) and should not
have too many zero-crossings itself. Otherwise a ‘smoothed’ recon-
struction of the time series exhibits a rough profile with many local
extrema and inflection points that are not supported by the data itself.

Noise can also be removed by smoothing techniques. Convolving
a signal with a low-pass filter [22] eliminates the high-frequent por-
tions of the signal. However, there is an infinite number of filters from
which one can choose, and each time a different ‘smoothed’ curve is
obtained. For bad choices of filter coefficients it may even happen
that the ‘smoothing’ process increases the number of local extrema,
which does not only contradict our intuition, but also corresponds to
an introduction of features not supported by the data. Besides that,
smoothing also dislocates zero-crossings. Selecting the right filter is
as difficulr as selecting the right � in uniform approximation or the
right number of segments � in least-squares approximation.

5 Multiscale Methods

Let us motivate multiscale methods by summarizing the drawbacks
of the previously mentioned approaches. The methods in section 3
may become pretty expensive in terms of computational costs. Usu-
ally, the number of clusters will be quite large and thus prototypes

�
Using this approximation we have a very bad estimate for the position of
the local minimum, the extracted location is not supported by the raw data.



may become quite similar. The discrimination between shapes re-
quires to compare all elements in the whole set of shapes, therefore
the approach may become hard to understand for a human as the set
is large.

All methods in section 4 implicitly assume that the noise level
does not change over time – only under this assumption one can se-
lect a representative data set and tailor the parameters ( � , � , filter
coefficients) of the respective method. However, this is not a realistic
assumption in data mining applications, where devices may record
data over long periods of time and failures and equipment degrada-
tion may affect the amount of noise. Badly chosen parameters lead to
abstractions that are not supported by the raw data (and thus hinder
the further KDD process).

If the clustering algorithms are crisp, that is, every data object is
assigned unambiguously to a cluster, then all methods from section
3 and 4 provide a single abstraction of the time series – although the
correctness of the parameters and the applied heuristics cannot be
guaranteed. A human is usually much more imprecise (or flexible) in
the classification of shapes.

Recently, multiscale methods became increasingly popular, since
they address the problems mentioned above. Instead of relying on a
correct parameter setting and abstracting the time series at a single
scale2 multiple abstractions at multiple scales are derived. But differ-
ent descriptions of the same time series cause ambiguity. Either the
knowledge discovery method can handle ambiguity or the descrip-
tions are compared to derive a most stable single description.

Although in principle one could use parameters like � or � to-
gether with the respective methods, traditionally smoothing and thus
the scale � of the filter is varied to obtain the different representa-
tions. A prerequisite of this approach is that the smoothing opera-
tion corresponds to our intuition, that is, peaks are only removed but
not introduced (which may happen if the filter is not appropriate,
as already mentioned in the previous section). It has been shown in
[2] that for the continuous case the Gaussian kernel is the only ker-
nel that guarantees that no zero crossings will be introduced in the
smoothed signal. For the discrete case, Lindeberg [18] characterizes
the scale-space kernels that guarantee this property.

The advantage of a multiscale approach as proposed by Witkin
[29] is that we can influence which features we want to hand over
to the KDD process on the basis of some robustness criterion. To
get reliable results, we have to make sure that the abstraction is not
obtained “by chance” due to a good or bad parameter setting, but
is robust against some variation. This is of special interest for large
data volumes where we cannot fix the parameters in advance since
the noise level may vary over time.

Compensating Dislocation We have already seen in figure 1 that
badly chosen parameters result in misleading abstractions (the posi-
tion of the local minimum in the left figure does not correspond to
the position in the curve). This effect of dislocation also occurs with
smoothing techniques.

By considering a curve (e.g. figure 2(a)) at multiple levels of
smoothing and locating the positions of extrema for each of the re-
sulting representations, it is possible to track the zero-crossing lo-
cations versus scale (the higher the scale the more smoothing has
been applied). Rather than considering the zero-crossings in the dif-
ferent representations as a set of unrelated events, they can be treated
as manifestations of the same physical events, which is why corre-

� Here, scale refers to the width of a Gaussian filter in kernel smoothing,
however, one could also say “at a single parameter setting”.
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Figure 2. Multiresolution analysis of a signal.

sponding zero-crossings are connected with lines (fig. 2(b)). If no
dislocation would take place, all these lines were perfectly straight.

Since minima and maxima can only vanish pairwise (it is not pos-
sible to have two local maxima without a minimum in between), any
time interval between two lines either remains a single interval or
is subdivided into three successor intervals as the scale decreases.
We thus may construct a tree describing the successive partitioning
of the signal into finer subintervals as new zero-crossings appear at
finer scales. This allows us to compensate the spatial distortion of
the zero-crossings at coarser scales: we use a coarser scale to identify
important features, and use coarse-to-fine tracking to localize the fea-
tures exactly in the raw data. Having identified the true locations, we
can propagate them from the zero scale up to higher scales, thereby
turning all contours into straight lines, as shown in figure 2(c). The
resulting (ternary) tree is called interval tree of scales [29] and is
shown in figure 2(c). The “

�
” and “ 
 ” signs in the rectangles indi-



cate whether the segment between the zero-crossings represents an
increasing or decreasing segment. The rectangles tessellate the time-
scale plane completely.

Stable Features Since we are interested in the robustness of the
extracted features, we want to use the lifetime over which a fea-
ture persists versus scale as a measure of robustness or significance.
Tall rectangles in the interval tree of scale persist against smoothing
and thus can be considered as being robust, while small vertical ex-
pansion indicates that the interval will disappear soon as we start to
smooth the data.

Once we have a numerical measure for segment stability [17], we
can seek for a single scale which maximizes the mean stability. How-
ever, once we have done a multiscale analysis we do not have to
restrict ourselves to features that appear in a single scale. Witkin pro-
poses to descend the tree from the top to the bottom, as long as the
mean lifetime of the offsprings is larger than the lifetime of any of the
parents. The latter criterion gives signal descriptions that correspond
very well to the human perception of the time series.

Thus, we use the interval tree of scales to convert a numerical time
series into a stable symbolic description consisting of labeled inter-
vals. The labels address increasing/decreasing behaviour if the first
derivative is used, or concave/convex behaviour in case of the sec-
ond derivative, or both. The description is stable in the sense that
small changes in the scale parameter do not change the symbolic de-
scription. No thresholds were necessary. The time consuming kernel
smoothing may be replaced by efficient wavelet analysis [3], allow-
ing also for compensating the usual flattening effects of smoothing.

6 Conclusions

In this paper we have summarized a number of time series abstrac-
tion methods. We believe that (a) the use of higher-representations is
very important if we want a human to understand the discovered re-
lationships and think that this is a prerequisite for knowledge discov-
ery. Since humans are used to work with graphical representations
of time series, abstracted representations are necessary to account
for the human way of perceiving time series. And while there are
many different abstraction methods, we believe that (b) most of these
methods are not very well suited for KDD and data mining, where as-
sumptions about constant noise etc. are not valid: If data is measured
over many years, the equipment may degrade and/or replaced, which
influences the amount of noise. It is important to have a method that
provides a robust and valid abstraction. Using multiscale methods in
the deductive approach, robustness can be obtained by considering
only features that persist over a broad range of scales, and validity
of the extracted features is achieved by tracking the intervals from
coarse to fine scales to compensate dislocation effects.
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