Visualising Clusters in High-Dimensional
Data Sets by Intersecting Spheres
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Abstract— In this paper, we re-consider the problem of map-
ping a high-dimensional data set into a low-dimensional visuali-
sation. We adopt the idea of multidimensional scaling but instead
of projecting a high-dimensional point to a low-dimensional
representation, we project a cluster in the high-dimensional
space to a 3D-sphere. Rather than preserving distances from
the high-dimensional space we aim at preserving the cluster
interdependencies and try to recover them by the arrangement
of the spheres. Using clusters and spheres rather than single data
objects makes the method much more suitable for larger data
sets. Our method can also be considered as a visual technique
for cluster validity investigations. Strongly overlapping clusters
or spheres in the visualisation are indicators for an unsuitable
clustering result.

I. INTRODUCTION

In this paper, we consider the problem of visualising a
high-dimensional data set. Information visualisation has a long
history and various methods for representing high dimensional
data in a low-dimensional space (usually 2D or 3D) have been
proposed, such as principal component analysis (PCA) [1] or
multidimensional scaling (MDS) [2] or FastMap [3]. The idea
of MDS is to map each high-dimensional data point to a corre-
sponding point in the 2D plane such that the pairwise distances
between any two data points is preserved best. The original
MDS algorithm determines the data projections by minimizing
an objective function which measures the difference between
the high- and low-dimensional distance. The original approach
suffers from the large number of parameters that have to be
optimized (2n parameters for n data objects).

The computational effort can be reduced by subsampling
the original data set and projecting the smaller subsample
instead of the complete original set. Rather than drawing a
random subsample, some thoughts should be spent on finding
a representative subset. This may be obtained, for instance, by
performing a cluster analysis: the k-means clustering algorithm
calculates c representative prototypes out of the n original data
points. Since ¢ <« n, applying MDS to the cluster centres is
much faster.

In this particular application the clustering algorithm is
used as a kind of data reduction method — the number of
clusters k therefore needs not to be the true number of clusters
in the data set. Instead, we may select & depending on the
computational effort we are willing to spend. Representing a
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data set of size n = 1000 by only some, say ¢ = 15, typical
MDS representatives is much faster, but also looses a lot of
information: Nothing is said about the number of data objects
that are represented by the prototype. A single prototype may
represent a complete or only a portion of a cluster, but from
the MDS projection we cannot tell whether the two clusters
are well-separated or close neighbours.

Our aim is to adapt the MDS approach to overcome these
problems. Rather than representing a cluster by a point in a
scatter plot, we use spheres and thereby have means to express
the size of a cluster with the help of the sphere’s radius.
(In this paper, we consider the case of a three-dimensional,
interactive display.) We use the fuzzy c-means clustering
algorithm (FCM), which is quite similar to k-means. It also
seeks for the ¢ most representative data points but, unlike k-
means, every data object belongs to all clusters simultaneously
— but to a different degree. We use this degree of belongingness
to measure the degree of overlap between clusters and arrange
the spheres in such a way that their intersection corresponds
to the overlapping degree in the original clusters.

The outline of the paper is as follows: In the next section,
we briefly introduce the fuzzy c-means clustering algorithm.
In section 111 we discuss the transformation of the FCM result
into a sphere configuration (radius and pairwise overlap). Next,
in section IV, we discuss the objective function that has to
be minimized to locate the spheres in such a way that their
overlap corresponds to the overlap of FCM clusters. Finally,
we present some results.

Il. THE Fuzzy c-MEANS ALGORITHM

The fuzzy c-means algorithm partitions a data set X :=
{x1,...,z,} C R? into ¢ clusters. Each cluster is represented
by a prototype p; € R¢, 1 < i < ¢. The data-prototype relation
is fuzzy, that is, a membership degree u; ; € [0, 1] indicates the
degree of belongingness of data object z; to prototype p; or
cluster number 7. All membership degrees form a membership
matrix U € R°*™. In the classical FCM we can interpret the
membership degrees as “probabilistic memberships”, we have
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The clustering process is carried out by minimizing the objec-
tive function
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under constraint (1). If the Euclidean distance between datum
x; and prototype p; is high, .J,, is minimized by choosing a
low membership degree near 0. If the distance is small, the
membership degree approaches 1. .J,, is effectively minimized
by alternating optimization, that is, we alternatingly minimize
(2) with respect to the prototypes (assuming memberships to
be constant) and then with respect to the membership degrees
(assuming prototypes to be constant). In both minimization
steps, we obtain closed form solutions, for the prototypes:
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and for the membership degrees:

Vi<i<e: ©))

1

— incase I; =0
e llzj—p;ll2 )\ m—T
=1\ Tz;—p; 12
1

il in case I; # 0,i € I
0 incase I; # 0,i ¢ I;

Uij =

where I; = {k € N<.|z; = pr}. The FCM algorithm is
depicted in figure 1. For a more detailed discussion of FCM
and examples we refer to the literature, e.g. [4], [5], [6].

choose fuzzifier m > 1 (typically m = 2)
choose termination threshold & > 0
initialize prototypes p;
repeat

update memberships using (4)

update prototypes using (3)
until change in memberships drops below ¢

Fig. 1.

The fuzzy c-means algorithm.

I1l. SPHERE CONFIGURATION

Once the membership matrix U and the cluster prototypes
pi, © = 1,...,¢, have been determined, we have to fix the
radius r; and sphere location ¢; for each cluster in the 3D
visualisation. A set of 3D spheres reflects the true data rela-
tionships well, if the intersection of the spheres corresponds
to the overlap of the clusters. Before we can evaluate and
optimize the position of the spheres, we therefore must define
the desired overlap of the spheres.

A. Cluster Size

Since the volume of the spheres shall represent the size
of the clusters, we calculate the radius r; directly from the
clustering result. We assume that the volume of a sphere
corresponds directly to the number of data objects contained
in a cluster. A canonical notion of the size of a cluster 7 in
case of fuzzy clustering is
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The volume of a sphere with radius r is V' = §m~3. Fixing a
constant data density o (default o = 1) for the visualisation,

s; data objects occupy a space of 2 and we thus obtain the
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B. Cluster Overlap

We compute a squared ¢ x ¢ matrix O = [o; ] encoding
how much cluster i and cluster & overlap. Quite similar to the
definition of the radius, we may define the degree of overlap
between two clusters as

oik = Y min{u;j,up;} 5)
Jj=1

This definition, however, leads to undesired results: Our goal is
that a positive overlap value o; ; is reflected in the visualisation
by intersecting spheres. Intuitively, if we have three clusters
in a row, there will be now overlap between the two outer
clusters, so their overlap values o; ; should be zero. But since
in the fuzzy c-means algorithm a data object always belongs
to all clusters simultaneously, none of the o, ; will actually be
zero. In consequence, with this definition we request that all
spheres should slightly intersect. This is an undesired effect,
therefore we let only those data objects contribute to o;
whose minimal membership degree min{u; ;, uy,; } lies above
some threshold.

Fixing this threshold is not that easy: suppose the minimum
of both membership degrees is 0.25. Should this data object
contribute to o;; or not? If the data object x; belongs to
one cluster with membership degree u;; = 0.7 probably
not, because this indicates a quite clear assignment to cluster
i. But if the highest membership degree is 0.4 only, the
memberships degrees to both clusters are comparably high
and we may say that x; belongs to both clusters. Another
problem is that the dimensionality of the data set influences
the membership degrees: The higher the dimension, the more
neighbours a cluster can have and the more clusters compete
for the membership degree.

Therefore we use a dynamic threshold of a-u, ; with u, ; =
max;=1.. u; j, €.0. o = 0.6. Only in case the minimum of u;_;
and uy,; is at least 60% of the highest membership degree
ux,j, the assignment of the data object is considered as being
ambiguous and xz; contributes to the overlap o; ;. (We will
present an alternative to this heuristic in section I1V-D.)

Similar to the cluster size s;, the overlap values o, corre-
spond to the (fuzzy) number of data objects in the intersection
of cluster 7 and k. Just as the cluster size has been transferred
into a sphere’s volume, we also transfer the number of data
objects shared by clusters ¢ and & into a corresponding space
volume by replacing o; , with o; 1/ o.

C. Cluster Size Correction

We have calculated the radius of the spheres on the basis
of the cluster size in section IlI-A. Suppose we have a
data set with two well-separated clusters A and B. After a
cluster analysis with ¢ = 3 we finally arrive at the following
visualisation: sphere #1 covers cluster A, the second cluster B
is covered by spheres #2 and #3. Since A and B are of equal



size, the spheres that represent cluster A and B should have
equal volumes. If spheres #2 and #3 are well separated, the
occupied volume will be equal to that of the sphere #1. But
if spheres #2 and #3 intersect very much, they occupy much
less space than sphere #1 and the user will perceive cluster B
as being much smaller than cluster A. Therefore, we increase
the size s; of a cluster by %22:1 0,1, before we actually
calculate the sphere’s radius r;. With this modification, the
user will perceive both clusters as equal-sized.

IV. FITNESS FUNCTION

The desired overlap o;; has been fixed in the previous
section on the basis of the clustering result. Next, given all
the spheres’ positions ¢; we need to measure how well the
spheres’ intersections correspond to the o; ; values. Once this
has been done, we can formulate the problem of finding the
optimal position of the spheres as a minimization problem. We
then solve this minimization by using an evolution strategy.

A. Evaluating a Configuration

Consider two spheres with d = ||g1 — g2|| being the distance
between their centres. Without loss of generality let us assume
that »; < 7o, that is, sphere 1 with radius r; is the larger
one. The volume of sphere i is V; = %wr?. Depending on
the radii r; and the distance d between the centres of both
spheres we distinguish four cases (cf. figure 2) to measure
(resp. approximate) the intersection volume V' of both spheres.
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Fig. 2. Possible cases of intersection.

Case 1: r;+79 < d. Both spheres are separated and do not
intersect. The intersection volume is therefore V' = 0
(cf. figure 2).

Case 2. 71 < d < r1 + ro. In this case both spheres
intersect, but neither centre lies within the other
sphere. The intersection of both spheres’ surfaces
defines a plane and the intersection volume can be
considered as a composition of two spherical caps
(cf. figure 3) sharing this plane as their base. Using
the notation in figure 3, the height of the two caps is
given by r; — d;. From the two right-angled triangles
in the figure (h* + d? = r? and h® + d3 = r3) we
derive L P
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and obtain dy from dy = d — d;. The volume of a

spherical cap with height A and radius r is given by

£mh?(3r — h), therefore the intersection volume is
given by
2
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Case 3: 71 — 712 < d < rq. In this case, the centre of
the smaller sphere falls within the larger sphere (cf.
figure 4). We consider this being a rare case in our
application, because this means that we have more
data objects in the overlapping region than in the
cluster itself.

Using the notation in figure 4, we construct the
overlap volume from V' = V5, -V +V/{ with 14 being
the volume of sphere 2, V; = Lmh3(3r; — hy) being
the spherical cap of sphere 2 with height A, and
V{ = imh3(3r; — hy) the spherical cap of sphere 1
with height h; (cf. figure 4). From (c£+a§)2jy2 =7}
and z2 + »? = rZ we obtain z = and get

ri—ro—d
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the cap heights from
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Case 4: d < r; —ry In this case, sphere 2 is completely
absorbed by sphere 1 and the intersection volume is
V = V4. This case, however, is almost impossible
when the overlapping volumes are derived from the
result of a partitional cluster analysis.

B. Evolution Strategy

Let us denote the intersection volume of the spheres cor-
responding to cluster ¢ and k by v; ;. Then, our aim is to

minimize . .
T=>"3" lloij—vijl? (6)
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The parameters to be optimized in this objective function
are hidden in the v, j-values. Since the radii of our 3D-
spheres are directly derived from the corresponding clusters,
the only free parameters are the centres of the spheres. This
means, the optimization has to adjust 3¢ parameters, because
the centre of each sphere is determined by a point in the
three-dimensional space. Since all parameters are real-valued,
we apply a standard evolution strategy (ES) (for a detailed
overview see for instance [7]). We use a (10,250)-ES with
adaption of the mutation rate. This means that we start with
a random population of 10 configurations of ¢ sphere centres.
Each sphere centre will generate 25 children by adding a
normal random variable with expectation value zero to each
of its three coordinates. From the 250 children the 10 best
are taken to the next generation. As a consequence, the best
solution might get lost, when all children are worse than the
best solution among the parents. Therefore, we always store
the best solution, to recover it at the end of the evolution
process. The adaption of the mutation rate, i.e. the choice
of the variance of the normal distributions, is carried out
according to Rechenberg’s 1/5 rule of thumb [8]. This means
that the mutation rate or average width of mutations is not
changed, if approximately 1/5 of the mutations are successful.
When the rate of successful mutations is significantly higher,
the mutation rate is increased, when the success rate is
significantly lower, the mutation rate is decreased. We stop the
evolution process, when no improvement of the best solution
could be achieved within the last 20 generations.
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Fig. 3. Intersection volume in case 2.

sphere 1

Fig. 4. Intersection volume in case 3.

The choices of the parameters for the evolution strategy
were made on a purely heuristic basis, but turned out to be
quite successful. Nevertheless, a detailed study of the influence
of the parameters on the results and the time needed to find
a good solution might yield an even better configuration.
However, such investigations are not within the scope of this

paper.

C. Further Modifications

Practical experiments revealed two problems. Firstly, if two
spheres do not overlap (but they should because o;; > 0),
there is no gradient information in J unless sphere i and &
are already close to each other. The evolutionary strategy tries
to improve the fitness function J by mutating the position
vector, but if none of these mutations lead (incidentally) to
an intersection of both spheres, the fitness function will not
change. To make this kind of random search more directed,
we add a penalty term: if v; , = 0 but 0; ;, > 0, we add d* to
introduce a tendency of moving both spheres closer to each
other.

Secondly, in the opposite case, if two clusters do not over-
lap, from the point of minimizing .J, we are perfectly fine if the
corresponding spheres touch each other (but do not intersect).
In this case, we have o; ; = v;; = 0 and so the difference
is also zero. However, when looking at the visualisation it is

sphere 2

e

sphere 2

extremely difficult to see whether both spheres actually overlap
or not. This makes the visual perception less valuable.

We may apply the same technique of introducing a penalty
term. In case of o; ;, = 0, if both spheres are too close to each
other (e.g. closer than 2(r, 4+ r3)) we add a penalty term (e.g.
(2(r1 + r2) — d)?) to introduce a repelling tendency in the
near range. There is, however, a drawback with this approach:
If we have, for instance, three spheres A, B, C and there is
some overlap between A and B as well as between B and
C, but none between A and C, then this penalty term may
still apply to A and C (depending on the radius of B). This
is highly undesirable, because the penalty term will now shift
both spheres apart from each other — thereby deteriorating the
fit of A/B and B/C.

We therefore use a different approach. Let us consider the
clusters as nodes in a graph and an overlap between clusters as
an edge in this graph. We then identify all connected subgraphs
in a first step. The goal of the optimization phase is to fit
all the overlapping degrees, therefore subgraphs that are not
connected among each other can be optimized independently.
This does not only reduce the computational effort, but also
solves the problem of perceiving unconnected subgraphs as
being connected, because now we can place the individually
optimized subgraphs separately.
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Fig. 5. Only a limited number of intersections can be achieved without
further interference.

D. Controlling the Complexity — Cluster Overlap Revisited

By identifying the connected subgraphs and optimizing
them individually, it is already possible to lower the complex-
ity of the approach. Another kind of controlled complexity
reduction is the following: Obviously a sphere can only
intersect a limited number of other spheres (cf. figure 5) — and
the higher the data space, the higher the number of possible
intersections. Knowing that the evolution strategy can only
reflect only a limited number, say maxconn, of overlapping
clusters, we may discard all cluster intersections below some
overlapping degree ocyt. We choose ogyt such that we obtain
at most maxconn overlapping spheres:

1) We calculate o, 4, directly from (5), ignoring the heuristic

threshold mentioned in section I11-B.
2) For each cluster ¢ we sort the overlap volumes o, in
decreasing order: 6;.1,0;2, ..., 0.c

3) Then, 6; maxconn denotes the highest overlapping degree
for cluster ¢ that we might consider while staying below
maxconn connected spheres.

4) We choose oyt as

Ocut = mlax O, maxconn
1=1..c

5) All overlap volumes o, < ocyt Will be set to zero (and

thus ignored during the optimisation).

The advantage of this approach is that it becomes very
clear, to what extent the visualisation simplifies the true cluster
relationships: all intersections below ogyt are not shown. The
threshold ocyt may be determined for all connected subgraphs
(global constant) or for each subgraph individually.

V. EXPERIMENTS

In this section, we give some preliminary results. It cannot
be overemphasized that the printed pictures appear quite
unspectacular and unimpressive, because a three dimensional,
animated scene lives from interaction. By changing the per-
spective the human observer gets a much better impression of
how the clusters mutually intersect.

Nevertheless, figures 6, 7 and 8 show a screen shot of the
visualisation of the IRIS data set, the auto-mpg and the wine
data set from the UCI machine learning repository [9].

Table | gives an impression on the achieved accuracy in
minimizing the fitness function (6) depending on the chosen
maxconn parameter. For all datasets we observe a sharp
increase in the fitness function at some maxconn value, e.g.,

for 4 — 5 in the auto-mpg data set or for 5 — 6 in the wine
data set. These values correspond to our intuition, because we
can expect that we can adjust the overlapping degrees of at
most 4 to 6 spheres at the same time.

maxconn iris wine auto

3 17.70 6.73  0.005

4 38.53 2.67 0.04

5 40.82 2.63 5553

6 44.20 7.06 25.96

7 53.38 37.60 3240
TABLE |

VALUE OF THE FITNESS FUNCTION (6) DEPENDING ON maxconn.

For the visualisation of the wine data set (figure 8), out
of 25 sphere intersections, 12 matched the original overlap
volume perfectly, in 4/1/2/1/1 cases we had an error below
5/10/15/20/25%, in 4 cases there was a sphere intersection
although o, = 0. Altogether, the approximation quality is
quite good and the visualisation turns out to give a good
impression of the structure in the data set.

Fig. 6. Visualisation of the IRIS data set with ¢ = 15, maxconn= 5.

V1. CONCLUSIONS

We have introduced a visualisation technique for higher-
dimensional and larger data sets based on a fuzzy cluster
analysis. The purpose of the clustering is not necessarily to
find an optimal (fuzzy) partition of the original data. The
function of the clusters is to cover the data. The visualisation
then tries to represent the clusters in such a way that their
overlap is best preserved. We have used an animated 3D
visualisation, since it allows more freedom than a simple 2D
representation. Of course, our approach can be applied in
the same manner to obtain a 2D visualisation. However, in
this case clusters would be represented by overlapping circles
instead of spheres, making it more difficult to preserve the
overlapping regions in the original space. A 2D representation
would also affect the choice of our parameter maxconn that
must be chosen much smaller than in the 3D case.
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Fig. 7. Visualisation of the auto-mpg data set with ¢ = 15, maxconn= 4.
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Fig. 8. Visualisation of the wine data set with ¢ = 15, maxconn= 5.

It should be mentioned that there are also also ways to
exploit fuzzy cluster analysis for visualisation purposes as they
are for instance proposed in [10], [11].

Finally, it should be noted that our approach can also be
used as a kind of visual cluster validity check. When we are
interested in a suitable clustering of the original data instead of
just partitioning them somehow for the visualisation, we can
visualise the clusters and see how much they overlap. Global
cluster validity measures like the partition coefficient or the
partition entropy [4] are based on the overlap of clusters. The
visualisation has the advantage that we do not only obtain a
single number as an indication of how well the clusters fit
the data — a problem already addressed in [12] — but we can
also see which clusters might not be trusted due to their high
overlap with others.
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