Handling Feature Ambiguity in
Knowledge Discovery from Time Series*

Frank Hoppner

Department of Computer Science
University of Applied Sciences Braunschweig/Wolfenbiittel
Salzdahlumer Strasse 46/48
D-38302 Wolfenbiittel, Germany
frank.hoeppnerQieee.org

Abstract. In knowledge discovery from time series abstractions (like
piecewise linear representations) are often preferred over raw data. In
most cases it is implicitly assumed that there is a single valid abstrac-
tion and that the abstraction method, which is often heuristic in nature,
finds this abstraction. We argue that this assumption does not hold in
general and that there is need for knowledge discovery methods that pay
attention to the ambiguity of features: In a different context, an increas-
ing segment may be considered as (being part of) a decreasing segment.
It is not a priori clear which view is correct or meaningful. We show
that the relevance of ambiguous features depends on the relevance of
the knowledge that can be discovered by using the features. We combine
techniques from multiscale signal analysis and interval sequence mining
to discover rules about dependencies in multivariate time series.

1 Introduction

Although a complex system is difficult to forecast or model as a whole, such sys-
tems (or subsystems thereof) very often cycle through a number of internal states
that lead to repetitions of certain patterns in the observed variables. Discovering
these patterns may help a human to resolve the underlying causal or temporal
relationships and find local prediction rules. Rather than trying to explain the
behaviour of the variables globally, we therefore seek for local dependencies in
the data. Now, consider a time series in some neighbourhood around ¢ and as-
sume an increasing trend in this area. This information is probably more reliable
than the value at ¢t alone, because a small amount of white noise will not turn an
increasing trend into a decreasing trend. There are, however, other effects than
white noise, and thus we must be aware that low-frequency disturbances may
have caused this increasing trend, but when looking at a coarser scale (zooming
out) we have an increasing trend. While our assumption is that there is always a
unique sequence of states a system has run through while producing its output, it

* This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant no. K1 648/1.

is extremely difficult to find the segmentation that corresponds to this sequence,
because this means that we have to distinguish all kinds of disturbances to re-
cover the unknown true signal. The difficulty is to distinguish between subtle but
important features and uninteresting noise (which is not necessarily Gaussian).

This is illustrated by the time series in Fig. 1. There are two major peaks and
right before the decreasing flank of the peaks there is a small peak (and thus a
short increasing trend) in both cases. Is that a coincidence? Or is it important?
Do we want a heuristic time series conversion procedure decide about that?
Better not, because if the peaks are falsely discarded, even the most powerful
pattern detection mechanism will not be able to recover their importance. On
the other hand, we do not want to consider every noisy data point separately,
since this would increase the computational cost of the pattern discovery process
significantly. The importance of such a small peak can only be shown a posteriori
by some interesting pattern that uses the peak. Surprisingly, most of the work
in KDD from time series, e.g. [3, 8, 4], use a single abstraction of the time series
and thus the decision whether such patterns will be detected or not is implicitly
handed over to the abstraction method. In this paper we provide an extension
of [4] that takes ambiguity into account.

Fig.1. A noisy time series.

2 An Overview of the Approach

In this section we outline our approach to knowledge discovery from time series
and the contribution of this paper. At the beginning, the time series are converted
into a higher-level representation, that is, a labeled interval sequence with labels
addressing aspects like slope or curvature. The sequence consists of triples (b, f, s)
denoting an interval [b, f] in time for which the description s € S holds (S
denotes the set of all possible trends or properties that we distinguish).

We use Allen’s interval relationships [1] to describe the relationship between
intervals, for example, we say “A meets B” if interval A terminates at the same
point in time at which B starts. In the following we denote the set of interval
relations as shown in Fig. 2 by Z. A temporal pattern of size k is defined by
a pair P = (s,R), where s : {1,..,k} — S denotes the label of interval #i,
and R € Z¥** denotes the relationship between [b;, f;] and [b;, f;]. By dim(P)
we denote the number of intervals k of the pattern P, we also say that P is a
k-pattern. The whole sequence is sorted lexicographically [7] and intervals are
numbered according to their position in the sorted list. Finding an embedding 7

A<-->

B -—» - time

B before [b] A —~— : A after [a] B
B meets [m] A —~— ; A is—-met-by [im] B
B overlaps [0] A -— A is—overlapped-by [io] B

B is—finished-by [if]| A <*+———» A finishes [f] B
B contains [c] A - » Aduring[d] B
B starts [s] A -~ A is—started-by [is] B
Bequals [=] A -~ Aequals [=] B

Fig. 2. Allen’s interval relationships.

that maps interval #i of a pattern P to interval #j in the sequence (7 (i) = j)
such that all interval relationships hold corresponds to searching an instance of
a temporal pattern in the interval sequence.

To be considered interesting, a temporal pattern has to be limited in its
extension. We therefore choose a maximum duration ¢;,.x, which serves as the
width of a sliding window which is moved along the sequences. We consider only
those pattern instances that can be observed within this window. We define
the total time in which the pattern can be observed within the sliding window
as the support supp(P) of the pattern P. We restrict our attention to so-called
frequent patterns that have a support above a certain threshold. For the efficient
support estimation of temporal patterns (see [4, 7] for the details), we make use
of a simple pruning technique: once we have observed an instance of a temporal
pattern, we can stop any further checking until this instance disappears from
the window. In order not to miss any instances, we must then be sure that we
always find the earliest instance of a pattern, otherwise we loose the soundness:
Suppose there are two instances at to and ¢1. If we detect the instance at ¢; and
postpone any further checking until this instance disappears it may happen that
the instance at ty has also disappeared before we perform the next check and
thus we loose the support in [tg, t;]. To ensure correctness we have shown

Theorem 1. Given two instances ¢ and 1y of the same pattern P, then m =
min(¢,) (i = min(¢(3),(3))) is also an instance of P and b, < min(by, by)
holds. (For any instance 9, by is the point in time when we start to observe 9.)

Thus, finding the earliest instance of a pattern corresponds to finding the first
mapping 7 (in a lexicographical ordering of vectors (7 (1), 7(2), ..., 7(dim(P))))
and we make use of this fact in the subpattern test in [7].

There is one important point about our interval sequence that has not been
mentioned so far. While we did not require that one interval has ended before
another interval starts (which enables us to mix up several sequences into a single
one), we required that every labeled interval (b;, f;, s) is maximal in the sense,
that there is no (b;, f;, s) in the sequence such that [b;, f;] and [b;, f;] intersect:

v(bhfiasi):(bj:fjasj):i<j:fiij:s’igésj (1)

The idea is that whenever (1) is violated, we can merge both intervals and
replace them by their union (min(b;, b;), max(f;, f;),s). However, in Fig. 1, we
have discussed the question whether the decreasing flank of the major peaks shall

be considered as a single decreasing flank within some interval [a, d] or a sequence
of increasing, decreasing, and increasing intervals within [a,b], [b, ¢], and e, d]
(a < b<e<d).Itis (1) that prevents us from composing our interval sequence
out of all these intervals, because (1) does not allow [a,d] and [¢,d] to have the
same label. Unfortunately, we have used (1) in the proof of Theorem 1 — thus we
loose the soundness of our approach if (1) is abandoned. In the remainder of this
paper we discuss how to recover the soundness and efficiency of the approach
when eliminating (1) and considering ambiguous data abstractions.

3 Multiscale Feature Extraction

By “feature” we refer to the labels of the interval sequence, such as increasing or
decreasing trend. How can we create an ambiguous abstraction of a time series
that uses such features? The transition between increasing and decreasing trend
is indicated by a zero-crossing in the first derivative, however, noise introduces
many zero-crossing and the resulting representation would not correspond to the
human perception of the profile. By analysing the signal in multiple scales, that
is different degrees of smoothing, and comparing the abstractions against each
other, a concise description of the time series (cf. Fig. 3) by means of an interval
tree of scale (cf. Fig. 4) can be developed [9]. Each of the rectangles in the
tree defines a qualitative feature (here either increasing or decreasing, indicated
by ‘+’ and ‘-’). The horizontal extent of the rectangle defines the valid time
interval for this feature and the vertical extent defines the valid range in scale.
A large vertical extent indicates that the feature is perceived over a broad range
of smoothing filters and thus represents a robust feature, whereas rectangles
with small vertical extent correspond to noisy features. Due to lack of space, we
neither explain the method in detail nor justify our choice, but refer the reader
to [9, 2] and [5], resp.

wind strength
scale

+ -+ + + |Te

ot e e

o 50 100 150 200 250 o 50 100 150 200

Fig. 3. Wind strength over 10 days. Fig. 4. Interval Tree of Scale.

4 Handling Ambiguity in the Discovery Process

We can circumvent the elimination of (1) by renaming the labels of all intervals
such that they reflect the scale from which they have been extracted. A label
s € S is no longer used alone but only in combination with a scale, like s — 4
indicating that the description s holds for scale 4. While “A starts A” is not

allowed, “A — 2 starts A — 4” does not violate (1). However, this approach
increases the data volume (if an interval labeled A survives over scales 1 to 5,
we have to add it 5 times to the interval sequences with label A — 1 to A — 5)
and does not match identical patterns on different scales (A — 4 does not match
A — 3). Therefore, we prefer not to incorporate the scale in the label. Then
it is sufficient to consider only one interval per rectangle in the interval tree of
scale. To follow this approach we have to find a new subpattern check. The naive
approach is to enumerate all occurrences of a temporal pattern and then yield
the one that can be observed first, however, this appears to be ineffective due to
the potential combinatorial explosion of possible embeddings.

Let us recall how the visibility of a temporal pattern is determined [7]: A
pattern becomes visible if the interval bound next to the rightmost interval
bound coincides with the right bound of the sliding window and invisible if
the interval bound next to the leftmost interval bound coincides with the left
bound of the sliding window. In previous work we have calculated the observation
interval a posteriori given a detected instance 7 of a pattern P. But since all
instances of P have the same qualitative structure and thus the same order of the
interval bounds, it is possible to compute in advance which are the two relevant
bounds'. Having identified these two bounds and the corresponding intervals #i
and #j of P, we may calculate the observation interval of a potential instance a
priori: we only have to know the two intervals that we intend to use for #i and
#j rather than the embedding 7 of the whole pattern.

Instead of a brute force enumeration of all possible embeddings in a naive
approach, we can now organize the search for valid embeddings in such a way
that the first match yields the earliest instance: For every pair of labels (s, 1)
and temporal relationship r, we maintain a list of matching interval pairs in
the sliding window. These lists are kept up to date incrementally whenever the
content of the sliding window changes. Thus, for any pattern P we easily find
all possible pairs of intervals that determine the observation interval. Sorting
these pairs by the beginning of the expected observation interval and using
this list to control the search for possible embeddings guarantees that we will
find the earliest instance first. Besides that, we use the lists of interval-pairs
to influence the backtracking depth of the subpattern check routine. For the
remaining intervals of the pattern, we look for the interval-pair with the smallest
number of occurrences in the sliding window. The fewer possibilities the lower
the probability of intensive backtracking.

5 Loosely Connected Patterns

With the elimination of (1) more temporal patterns are allowed and thus we have
implicitly increased the size of the pattern space. In this section we propose to
remove some other patterns from the pattern space to compensate this increase.

! The algorithm is somewhat troublesome but nevertheless straightforward. No sketch
is given due to lack of space, contact author for detailed report.

In most other approaches where (local) time series similarity is decided with
the help of a sliding window (e.g. dynamic time warping), to be considered as
similar the complete content of one window position has to match the complete
content of another window position. In our approach, the window is not that re-
strictive, it mainly provides an upper bound for the temporal extent of patterns,
while the content of the sliding window at different positions has to match only
partially — depending on the pattern we are currently looking for. Therefore, it
makes sense to experiment with larger sliding windows.

Suppose that we have an interesting pattern P. The probability of observing
pattern “P overlaps A” or “P meets C” does not increase significantly with
the window width: such patterns can already be observed with smaller window
width and the number of occurrences increases only slightly as the window width
is increased. However, patterns “P before A” or “A before P” become more
frequent, simply because it is more and more likely that we can observe some
more A instances as the width of the sliding window increases — far apart and
without any relationship to P. Thus, a rule P — A does not necessarily indicate
a relationship between P and A, it may have arisen from a large window width.

We call a temporal pattern P loosely connected (LC-pattern), if the (undi-
rected) graph G = (V, E) is connected, where the set of vertices is given by
V = {1,..,dim(P)} and the set of edges is given by E = {(i,5) | R[i,j] € Zr}
with Z;, = Z\{after, before}. Note that this definition does not exclude after and
before relationships in P in general. Intuitively, a pattern is loosely connected
if we can draw a vertical line through the pattern without intersecting intervals
and thereby separating the intervals into two groups. We want to restrict the
pattern enumeration process to LC-patterns. To do this, we have to make sure
that during candidate generation all and only LC-patterns are generated.

For the pruning of candidate patterns in association mining we use the fact
that any subpattern of a frequent pattern is itself a frequent pattern. This is no
longer true for loosely connected patterns (consider “A overlaps B, B overlaps
C” and the removal of B). However, we have the following observation: Given
a (loosely) connected pattern P with dim(P) > 2. Then one can find at least
two different LC-subpatterns @ and R with dim(Q) = dim(R) = dim(P) — 1.
Among the (k—1)-subpatterns there are at least 2 subpatterns which are loosely
connected. From those we can construct a set of candidate patterns similar as it
has been done before [4]. However, with respect to pruning efficiency we expect
the new candidate generation algorithm to generate more candidates than before
because we have fewer LC-subpatterns that can be used for pruning. (Algorithms
are omitted due to lack of space, request detailed report from author.)

6 Ewvaluation

In our experiments, the number of intervals in a multiscale description was 2—-3
times the number of intervals in a single scale description. Increasing the num-
ber of intervals while keeping the set of labels constant may cause a dramatic
increase in the number of frequent patterns (much more relationships contains,

starts, finishes, etc.). But on the other hand, only a small percentage of the fre-
quent patterns are loosely connected patterns (percentage decreases drastically
with increasing window width), therefore the reduced pruning efficiency in case
of loosely connected patterns is compensated by the savings during support es-
timation. The pruning techniques are less efficient, the ratio of frequent patterns
among candidate patterns decreases. This is due to the fact that we have fewer
loosely connected subpatterns that can be used for pruning. In our application to
weather data we obtained much better supported patterns than without consid-
ering ambiguous abstractions, which we take as an indication that the previously
used abstraction method did not always provide the best segmentation possible.

For illustration purposes we demonstrate the method using an artificial
example, which has been generated by concatenating noisy squared and un-
squared sine waves (sin(%7t), t € {O ,I} with [varying randomly within 200
and 300). For some 7 € {16, 18 16, 15} we randomly added a Gaussian bump
(exp(—(t—7%1)?/100)/h with h varying randomly w1th1n 2 and 3). The sine wave
is squared if a Gaussian bump appears at 7 = 5. Figure 5 shows an excerpt
of this time series. The difficulty is to dlstlngulsh the important bump (¢t = —)
from those that have no special meaning (7 € {16, 167 12 1. It is not possible to
generate a single abstraction of the time series that contains only the important
bumps, since all bumps have the same characteristics. Their importance can only
be revealed by means of the rules that can be discovered by using them.

Fig. 5. The “sine wave with bumps” example.

We ran the discovery process (window width 200, supp,,;, = 5%) with in-
creasing and decreasing segments only. Then we performed specialization of the
best discovered rules [6] to get some evidence for useful thresholds on segment
lengths. From the histogram of thresholds on interval lengths we identified two
major peaks at segment length ~ 50 and = 90. Therefore the process was
restarted with refined labels denoting the length of the segment (label prefix
“short” if < 50, label prefix “long” if > 90). We specialized the discovered
rules that contained a “long-dec” label and the best rule with “long-dec” in
the conclusion was

If | short-dec | inc | has been observed with a gradient be-

tween 0.006-0.009 and a length > 24 for the inc segment, then
short-dec | inc | long-dec |Wi11 be observed.
The rule has a support of 10% and confidence of nearly 100%. The premise
contains a short decreasing segment (from a Gaussian bump) that meets an
increasing segment of the remaining sine wave. A long decreasing segment (>
90) is only obtained for an unsquared sine wave, therefore this rule recognizes
the relationship between the first bump and the squaredness of the sine curve.

The squared and non-squared sine waves distinguish slightly in their derivative,
and the additional quantitative constraint on the gradient obtained from rule
specialization [6] focuses on the non-squared sine wave.

7 Conclusions

In knowledge discovery from time series one has to carefully balance the features
of the used time series similarity measure and the computational cost of the
discovery process. The proposed approach via labeled interval sequences supports
partial similarity of time series segments and can handle gaps, translation and
dilatation to some extent. Furthermore, it can be applied not only to univariate
but also to multivariate time series, and the representation is close to the human
perception of patterns in time series. Ambiguity in time series perception is an
important issue and we have shown in this paper that certain relationships in the
data cannot be revealed if only a single abstraction is used. We have extended
our approach by the ability of taking ambiguity in time series perception into
account, which is a feature that is absent in most competitive approaches.

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Comm. ACM,
26(11):832-843, 1983.

[2] B. R. Bakshi and G. Stephanopoulos. Reasoning in time: Modelling, analysis, and
pattern recognition of temporal process trends. In Advances in Chemical Engineer-
ing, volume 22, pages 485-548. Academic Press, Inc., 1995.

[3] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery
from time series. In Proc. of the 4th Int. Conf. on Knowl. Discovery and Data
Mining, pages 16-22. AAAI Press, 1998.

[4] F. Hoppner. Discovery of temporal patterns — learning rules about the qualitative
behaviour of time series. In Proc. of the 5th Europ. Conf. on Principles of Data
Mining and Knowl. Discovery, number 2168 in LNAI, pages 192-203, Freiburg,
Germany, Sept. 2001. Springer.

[5] F. Hoppner. Time series abstraction methods — a survey. In K. Morik, editor,
GI Workshop on Knowl. Discovery in Databases, LNI, Dortmund, Germany, Sept.
2002.

[6] F. Hoppner and F. Klawonn. Finding informative rules in interval sequences. In
Proc. of the 4th Int. Symp. on Intelligent Data Analysis, volume 2189 of LNCS,
pages 123-132, Lissabon, Portugal, Sept. 2001. Springer.

[7] F. Hoppner and F. Klawonn. Learning rules about the development of variables over
time. In C. T. Leondes, editor, Intelligent Systems: Technology and Applications,
volume IV, chapter 9, pages 201-228. CRC Press, 2002.

[8] E. J. Keogh and P. Smyth. A probabilistic approach to fast pattern matching in
time series databases. In Proc. of the 3rd Int. Conf. on Knowl. Discovery and Data
Mining, pages 20-24, 1997.

[9] A. P. Witkin. Scale space filtering. In Proc. of the 8th Int. Joint Conf. on Artifial
Intelligence, pages 1019-1022, Karlsruhe, Germany, 1983.

