
Enriching Multivariate Temporal Patterns with
Context Information to Support Classification

Frank Höppner, Sebastian Peter and Michael R. Berthold

Abstract In this paper we consider classification tasks where the class depends on
the co-evolution of multiple variables over time, for instance, “if A happens before
B and in the meantime we do not observe C, then we have a failure of class X”. We
present a two-phased approach to derive such patterns from data. In the first step,
we seek the most specific pattern that still matches all data from one class and in the
second step we constrain the pattern further, such that it discriminates with respect
to other classes. While the second step is directly motivated by the classification
task, the first step enables the user to better match his or her mental model of the
temporal process to the patterns derived by the classifier. The experimental evalua-
tion on the libras dataset has shown that the additional first step not only improves
the interpretability, but also the classification results.

1 Introduction

Measuring and recording data is easy and cheap nowadays, but in some applications
substantial conclusions can only be drawn if we extend our observations to a certain
period of time. An operator who is controlling a chemical production process, a
user interacting with a technical device, a medic administering a drug to a patient –
in all these cases instantaneous information does not help to differentiate between

Frank Höppner
Ostfalia University of Applied Sciences, Department of Computer Science, D-38302 Wolfenbüttel,
Germany e-mail: f.hoeppner@ostfalia.de

Sebastian Peter
University of Konstanz, Nycomed-Chair for Bioinformatics and Information Mining, Box 712, D-
78457 Konstanz, Germany e-mail: sebastian.peter@uni-konstanz.de

Michael R. Berthold
University of Konstanz, Nycomed-Chair for Bioinformatics and Information Mining, Box 712,
D-78457 Konstanz, Germany e-mail: michael.berthold@uni-konstanz.de

1

2 Frank Höppner, Sebastian Peter and Michael R. Berthold

a successful and a failed process, decide about the ergonomics of a man-machine
interface or judge about the chances of patient recovery. It is necessary to observe
multiple attributes over a period of time to derive rules specifying how a class label
may depend on the history of observations.

Measuring a couple of variables over a period of time turns the classification
task into a high-dimensional problem. As classifiers seek for the best attribute to
discriminate between the classes, they may eventually come up with classification
rules that only depend on a few of these attributes. However, users wants to align
the findings with their mental model, which is difficult if most of the temporal con-
text is ignored or lost by the classifier. In this paper, we propose to include more
background information by means of a temporal outline or sketch, which is then re-
fined by the classifier. This approach tackles two problems: It reduces the danger of
overfitting, because it reduces the possibilities of combining arbitrary features that
may occur otherwise at any time in the recorded history and, secondly, it provides
the necessary background information for the user when inspecting the result.

The remainder of the paper is organized as follows: In Sect. 2 we briefly discuss
the representation of temporal data and review related work. The classifier we are
going to use in this paper is reviewed in Sect. 3, while an approach to provide the
aforementioned background information is discussed in Sect. 4. Results on the libras
data set are discussed in Sect. 5. Section 6 finally concludes the paper.

2 Representation and Related Work

Rather than considering values individually, we employ temporal abstractions such
as ’rising temperature’, ’connection established’, ’low user activity’, or ’increased
variance’. We thus describe the evolution by means of temporal predicates: denoting
the temporal dimension by T, a temporal predicate Pl is a function Pl :T→B, where
l is called the label of the predicate P. Examples for predicates (and especially their
label) were given above. The choice of predicates is domain dependent and part of
the feature selection step in data mining. A set of predicates (which we will call
history H) may be depicted by plotting them against the temporal dimension (cf.
Fig. 1). The use and visualization of temporal abstractions has a long tradition in
the medical domain [9]. Note that in contrast to stream mining approaches, where a
single but potentially infinite stream of data is considered, we assume that multiple
(finite) labelled histories are available.

Various ways of defining patterns in a stream of labeled intervals have been pro-
posed in the literature, many of them relying on Allen’s interval relationships [1]
(cf. Fig. 2) or variants thereof. Some approaches define a history by specifying the
exact relationship for every pair of intervals [3], others allow for a set of possible
relationships [4]. The representation by sequences of chords [6] uses a partially or-
dered sequence of simultaneous (sub)intervals to define a pattern. Other proposals
consider a different set of interval relationships or specify the relationship between
temporal intervals only partially [5].

Enriching Multivariate Temporal Patterns to Support Classification 3

connect A

connect B

peak load

load increase

Fig. 1 Representation of Evolving Data: the black
rectangles denote the intervals when the predicate
holds (labels on the left).

B before A

B meets A

B overlaps A

B is−finished−by A

B contains A

B starts A

B equals A

B

A

Fig. 2 Thirteen possible relationships be-
tween two intervals. The inverse relation-
ships (before↔ after) have been omitted.

While these approaches have their individual strengths, they also have their
weaknesses even when it comes to represent simple situations. Thinking of pre-
dicting a certain state of some network server (breakdown, overload, malfunction,
etc.) on the history of, say, the last 24 hours, a situation as simple as “there was only
one connection to server A” (during the last n hours) is usually prohibitive to dis-
cover using approaches based on association rules [3, 6], as they count occurrences
of events and often rely on a quickly decreasing count of co-occurrences, which
forbids an inclusion of absent features during counting. A situation like “at some
point in time, both A and B hold” is a challenge to approaches such as [3], because
they rely on explicitly specified interval relationships (which are ambiguous in this
case). Temporal constraints “the connection to A was lost for at least 4 hours” or “...
at most 4 hours” are usually ignored or introduced in a postprocessing step.

3 Representing and Classifying Temporal Data

To support an intuitive understanding we choose a rule-based approach where the
conclusion part predicts the class and the premise of the rule contains a pattern that
has to be matched to a given history. In [7] a notion of a pattern, called template
history, has been introduced. A template history may be visualized as in Fig. 1,
but this time a black box is understood as a constraint that has to be fulfilled by
a matching history. The constraints on the presence of temporal abstractions are
not fixed in time to compensate dilational and translational effects, only the order
in which the constraints have to be fulfilled must be preserved. A template is thus
decomposed into a number of n successive blocks whose absolute duration may vary
from case to case. Together with a selection of m temporal predicates, we obtain an
m×n matrix C where each cell Ci, j represents a constraint on the ith predicate in the
jth block (cf. Fig. 3). We distinguish between four different constraints:

Definition 1 (predicate constraint). Given a temporal interval T ⊆ T and a predi-
cate P, we say (a) P is present during T if ∀t ∈ T : P(t), (b) P is absent during T if
∀t ∈ T : ¬P(t), (c) P exists during T if ∃t ∈ T : P(t) and (d) P disappears during T
if ∃t ∈ T :¬P(t). If no condition is posed, we say P is unconstrained during T . By C
we denote the set of constraints {present, absent, exists, disappears, unconstrained}.

4 Frank Höppner, Sebastian Peter and Michael R. Berthold

Besides the constraints in the cells of the matrix, we may additionally constrain
the duration of each block:

Definition 2 (template). A tuple T = (L,n,C,D) is called a template if L is a set
of labels, n ∈ N, C : L×{1, ..,n} → C and D : {1, ..,n} → (T∪{∞})2 satisfying
1 ≤ dmin ≤ dmax for any D(i) = (dmin,dmax), 1 ≤ i ≤ n. The map C constrains the
predicate in each block, the map D contrains the block duration.

���������
���������
���������
���������

���������
���������
���������
���������

��������
��������
��������
��������

present

absent

unconstrained

exists

disappears

t 0 t tt 1 2 3

a

b

c

[1,10]

C(b,1) 0[D(2) ,D(2)]1

1 n...0

labels

[1,*] [1,*]

Fig. 3 Illustration of the template definition. The predicate constraints are color-coded.

Figure 3 shows an example template with n = 3 blocks, defined by four time
points (vertical lines), where the leftmost and rightmost time point shall always
represent the start and end of the history. The bottom row declares that a predicate
Pc is absent in the whole history. Somewhere in the history (2nd block), Pb is present
(Pb may be present or not elsewhere (=unconstrained)). Pa is present from the very
beginning, but disappears while Pc is present in the 2nd block. The duration of the
first block is arbitrary, the second block takes 1 to 10 time units (D(2) = (1,10)),
the last block may again have any (positive) duration (’*’ represents ’∞’).

Matching a template to a history involves the determination of points ti in time
(temporal alignment) such that all constraints hold.

Definition 3 (match). Let T = (L,n,C,D) be a template and H be a history. Let
[tmin, tmax] be the smallest interval subsuming ∪P∈Hdom(P). T matches a history H
if and only if (a) there is a predicate Pl ∈ H for every l ∈ L, (b) there are ti ∈ T,
0 ≤ i ≤ n, with t0 = tmin, ti ≤ ti+1, tn = tmax, (c) for every l ∈ L and i ∈ {1, ..,n}
the constraint C(l, i) holds for Pl within [ti, ti+1) and finally (d) for all 1 ≤ i ≤ n:
ti− ti−1 ∈ [dmin,dmax] with (dmin,dmax) = D(i).

In [7] we proposed a method to explore the space of templates to find good dis-
criminators between differently labeled histories. The search algorithm implements
a general-to-specific search: It begins with an empty pattern and specializes it fur-
ther to improve some measure of interestingness (we used the J-measure [10] as it
balances the generality (applicability of the rule) and the interestingness (deviation
from a priori knowledge)). The initial template that matches all histories consists
of one block, all predicate constraints are unconstrained and so are the temporal
constraints (1,∞). While a propositional rule can only be specialized by an addi-
tional condition (like outlook=sunny), there are at least three ways to specialize a

Enriching Multivariate Temporal Patterns to Support Classification 5

template: we may look at it in a finer resolution (by subdividing the temporal axis
further), we may change or add a predicate constraint (for some label and block), or
may introduce or change an existing temporal constraint. We thus have chosen three
different specialization operators to address each of these aspects. The general idea
for all refinement operators is to search for specializations that improve the measure
of interestingness. A more detailed description of the operators and the quality of
the learned patterns can be found in [7].

4 Providing Background Information

The idea of providing ’temporal context’ in a template is to find some (most specific)
pattern that matches all instances of a given class. Such a pattern may be used as a
starting point for the beam search mentioned in Sect. 3. The problem of finding such
a pattern is closely related to the alignment of multiple sequences, which is known
to be NP-complete [11]. As all instances of the same class may in principle share a
considerable number of blocks, the use of pattern mining algorithms that enumerate
subpatterns is prohibitive because the number of subpatterns grows exponentially
with the length of the sequence. However, we do not rely on the optimal or even the
most specific pattern, but assume that any pattern that is shared by all instances of
the same class will help to provide contextual background. Therefore we are duly
satisfied with an approximate or heuristic solution to this problem. One possible
approach will be discussed in the remainder of this section, but we do not claim any
specific properties or advantages of this solutions: but our intention is to demonstrate
that (any) common subpattern is potentially useful.

The idea behind our simple heuristic method is to exploit the fact that each in-
stance itself should match the sought common subpattern – and that we thus may
identify it by simplifying the instance subsequently. At first, an arbitrary selected
history is transformed into a template history: Whenever a predicate changes its
value, we introduce a new block. If the predicate holds during the block, we place
a present constraint in the respective block, otherwise we leave it unconstrained.
A copy of this template history is created where all predicate constraints are set
to unconstrained, which is trivially matched by all instances. Next, we transfer the

A

B

C

A

B

C

(b) (c)(a)

A

B

C

Fig. 4 Three sample histories for the starting pattern algorithm

6 Frank Höppner, Sebastian Peter and Michael R. Berthold

present constraints (one by one) from the instance pattern to the (initially blank)
copy and only keep it if it still matches all instances of its class.

For example: Given the three different histories shown in Fig. 4, we want to find
a common subpattern, shared by all three histories. We start by using (a) as the start
instance (please note that every instance could be picked). In the first step we create
the template history by counting the blocks (segments between the dashed lines
because there is at least one predicate change) and convert it into the history shown
in Fig. 5. Finally we change all predicate constraints to unconstrained as shown in
Fig. 6.

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 5 Sequence (Fig. 4(a))
transformed into a template
history.

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 6 Template history
(Fig. 5) with all predicate
constraints changed to un-
constrained.

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

Fig. 7 Starting pattern af-
ter adding the A-Label inter-
vals to the starting pattern in
Fig. 6.

In the second step we add constraints to the pattern and check if the resulting
pattern still matches all instances. Therefore we go through the original template
history row by row and transfer the present-constraints to the pattern. Furthermore
we add a new unconstrained block before and/or after the modified block to relax the
required predicate relationships. We obtain four possible patterns in total – if more
than one turns out to match all histories we choose the most specific one. For label A
the algorithm adds the present constraints as shown in Fig. 7 directly to the pattern,
so we inspect the refinements for label B in more detail. The four possible patterns
shown in Fig. 8 are created as the possible refinements. Evaluating the first pattern
shows that the instance in Fig. 4(c) is not matched anymore because the relation ’A
meets C’ is not present (but ’A before B’). The second pattern matches all sequences
because the meet-relationship has been relaxed by the intermediate unconstrained-
block. The remaining two patterns duplicate the final unconstrained-block but do
not add any substantial differences. A further refinement is not possible, as there is
no position for B that matches all three histories in Fig. 4.

Drawbacks of heuristic approach. From the example above we also recognize
the drawback of this approach. The resulting patterns depend on the order in which
the labels are added to the pattern. If we had started with adding a present constraint
for predicate C we would not be able to add any more constraints, because all other
intervals occur in different relationships to C.

Enriching Multivariate Temporal Patterns to Support Classification 7

A

B

C

[1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *][1, *]

[1, *] [1, *] [1, *] [1, *] [1, *]

A

B

C

A

B

C

[1, *] [1, *] [1, *] [1, *] [1, *][1, *]

A

B

C

[1, *] [1, *] [1, *] [1, *]

(b)
(a)

(c) (d)

Fig. 8 Four template histories tested by the algorithm by adding B to the pattern shown in Fig. 7.

5 Experimental Evaluation

We applied our algorithm to the libras movement data set from the UCI repository
[2]. It contains 15 different signs described by their characteristic hand movements
over 45 time frames, where the current x- and y-positions of the hand were recorded.
There are 24 instances per sign, 360 in total.

Data preperation & evaluation settings. In a first step we have manually in-
spected all hand movements and removed clear outliers and incomplete movements,
such that not only parts of the hand movement appear in each class but the complete
sign is visible. We have subsequently extracted predicates that represent the hand
movement, e.g., the speed of the movement (overall speed and separate movement
in x- and y-direction). We used a priori defined thresholds and the following labels
only:

• x-movement: fast left (−−), left (−), constant (o), right (+), fast right (++).
• y-movement: fast down (−−), down (−), constant (o), up (+), fast up (++)
• x/y-moveall: fast (++), normal (−) (this label is the same as x/y-movement with-

out distinguishing between left/right resp. down/up).
• Curve: nearly same direction (o), middle change of direction (+), abrupt change

of direction(++)

For example, a fast hand movement to the upper left may be recognized by observing
predicates x-movement −− and y-movement ++ at the same time.

We divided the preprocessed data into training (66%) and test (33%) data. For
each sign we constructed a shared pattern and refined it using the classifier in [7] on
the training set. The signs #10 and #12 were merged to just one class #10, because
the set of features we had chosen was not suited to distinguish between these two
hand movements. For the evaluation against the test set, we matched an instance
against all obtained patterns – if an instance matches only a single rule pattern, the
classification rule predicts the class; if no unique pattern matches, we classify it as
“cannot predict”.

8 Frank Höppner, Sebastian Peter and Michael R. Berthold

5.1 Effect on Interpretability

Before discussing the classification performance we start by comparing the learned
template histories for three different hand movements shown in Fig. 9, 10 and 11.
We want to demonstrate the usefulness of the identified ’common pattern’ for align-
ing it with the user’s mental model of the considered process.

Fig. 9 Example hand move-
ment for sign #1.

Fig. 10 Example hand
movement for sign #3

Fig. 11 Example hand
movement for sign #14.

Sign #1. The pattern for sign #1 found without a start pattern is shown in Fig. 12.
By inspection of this pattern, it is quite difficult to recover the actual hand move-
ment, because it consists of many absent-constraints, which are difficult to align
with a mental model of the hand movement. Furthermore, the first and last blocks
consist of unconstrained-conditions only. Thus we do not get any information about
what may happen before or after the pattern or at what time it might occur.

[1, *] [1, *] [1, *] [1, *] [3, 5] [1, *] [1, *]

Y−Movement/−

Y−Movement/o

Fig. 12 Pattern found by the beam search without a starting pattern for sign #1.

Fig. 13 shows the pattern found with the help of a starting pattern: the many
present-constraints support the user in understanding the actual hand movement.
The pattern describes the hand movement almost completely: a fast left-right-
left movement (present x-movement/–, x-movement/++ and x-movement/–) com-
bined with an up-down-up movement (present y-movement/+, y-movement/- and
x-movement/+). We also observe periods of ’high speed movements’ and low speed
when changing directions. In total the key features of the sign #1 as shown in Fig. 9
are well reflected.

Sign #3. Fig. 14 shows the pattern learned for the sign #3 without a starting
pattern. It is again a simple pattern which forbids the occurrence of a fast left or right
movement (absent x-moveall/++) at any time and requires a fast upwards movement
for 7-10 time frames in the middle of the sign (absent to present to absent constraint
for y-movement/++). Again, this pattern does a good job in discriminating sign #3

Enriching Multivariate Temporal Patterns to Support Classification 9

X−Movement/+

X−Movement/++

X−Movement/−

X−Movement/−−

X−Movement/o

Y−Movement/+

Y−Movement/−

Y−Movement/−−

Y−Movement/o

Y−Moveall/+

Y−Moveall/++

Curve/o

Speed/+

Speed/++

Speed/+++

Fig. 13 Pattern found by the beam search with the help of a starting pattern for sign #1.

[1, *]

X−Moveall/++

Y−Movement/++

[1, *][1, *] [1, *][7, 10]

Fig. 14 Pattern found by the beam search without a starting pattern for sign #3.

from all other signs, but it does not help the user to get an impression of sign #3,
because it mainly carries information about which predicates are not allowed rather
than which are required.

Speed/o

Speed/+

Curve/o

X−Movement/++

X−Movement/o

Y−Movement/+

Y−Movement/++

Y−Movement/−

Y−Movement/−−

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *] [1, *] [1, *][1, *]

Speed/++

Speed/+++

Y−Movement/o

Fig. 15 Pattern found by the beam search with a starting pattern for sign #3.

The pattern which was learned with the help of a starting pattern (Fig. 15) reveals
the hand movement pretty well. We recognize that the pattern falls into three parts
with unconstrained blocks (6th and 10th block), which allow for gaps between the
three parts. In the first part the pattern requires no noticeable movement (present
X- and y-movement/o) at the beginning, and is followed by a downward move (y-

10 Frank Höppner, Sebastian Peter and Michael R. Berthold

movement −−), an upward move in the second part, and a downward move in the
third part again. No movements to the left or right are allowed as the ’x-movement/o’
predicate is present most of the time. The absent constraint for ’x-movement/++’
(top row) was added during the beam search refinement to better discriminate the
pattern from all other classes.

X−Moveall/++

X−Movement/−

Y−Movement/+

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][11, 18]

Fig. 16 Pattern found by the beam search without a starting pattern for sign #14.

Sign #14. Finally we inspect the results for sign #14 (cf. Fig. 11). The pattern
obtained without using a starting pattern is shown in Fig. 16 and describes an upward
move of 11 to 18 time frames and no such upward move before or afterwards. The
downward move (which occurs later) is not part of this pattern, because it did not
help to discriminate sign #14 from other signs, but it would definitely help the user
to interpret the pattern and associate it with Fig. 11.

X−MoveAll/++

X−Movement/o

Y−Movement/+

Y−Movement/−

Y−Movement/−−

Y−Movement/o

X−MoveAll/+

Speed/o

Speed/+

Curve/o

Speed/++

Speed/+++

[1, *] [1, *] [1, *] [1, *] [1, *] [1, *][1, *] [1, *] [1, *] [1, *] [1, *][1, *]

Fig. 17 Pattern found by the beam search with a starting pattern for sign #14.

In Fig. 17 we see the pattern found when using the starting pattern. The pat-
tern is fully connected, there is no block with only unconstrained predicates. Thus
the pattern describes the whole movement without any gaps, which is particularly
helpful in reconstructing the hand movement. The pattern requires that there is no
movement at the beginning (x/y-movement/o present). During blocks 3 and 4 the
template describes an upward move (present y-movement/+) followed by a com-
bined upward move to the right or left (present x-moveall/+ and y-movement/+). In
block seven the upward move stops because y-movement/o has to be present and
the movement in x-direction accelerates (as present x-moveall/++ appears). During
blocks 8-10, the hand movement in the x-direction decelerates and starts to move

Enriching Multivariate Temporal Patterns to Support Classification 11

downwards. In the last two blocks the x-movement disappears (as x-movement/o
present appears) and the downwards move gets slower as well. If we now take into
account that during the whole hand movement the speed of the hand is very high
and there are no abrupt change of directions because curve/o holds, we are able to
interpret the pattern as a half circle movement. Another interesting aspect is that the
pattern does not state a concrete direction of the x-movement. This is due to the fact
that the sign could be drawn from right to left or from left to right.

Some hand movements appear easier to understand by inspecting the plots (e.g.
Fig. 11) rather than the obtained patterns (e.g. Fig. 17). But this is only true because
the underlying predicates have been extracted from two-dimensional hand move-
ments. In general the data source may consist of more dimensions, mixed binary
and numerical sensors, etc., such that no condensed representation as in Fig. 11 is
possible. We have chosen the libras data set to illustrate that the proposed history
templates actually help the user to grasp what is going on in the data.

5.2 Effect on Classification Performance

Having discussed the effect on the interpretability, we we now investigate the effect
on the classification results. The confusion matrices are shown in Fig. 18 (without
starting patterns) and Fig. 19 (with starting patterns).

class 1 2 3 4 5 6 7 8 9 10 11 13 14 15 cannot predict

1 3 1
2 5 1
3 4
4 3 2
5 2 3
6 1 4
7 1 4 1
8 3
9 8

10 10 3
11 5 3
13 4 4
14 5
15 5

Fig. 18 Confusion matrix for the learned pat-
terns without starting pattern with accuracy:
71.765% and error-rate: 28.235%.

class 1 2 3 4 5 6 7 8 9 10 11 13 14 15 cannot predict

1 4
2 6
3 4
4 5
5 5
6 4 1
7 4 2
8 3
9 8

10 11 2
11 7 1
13 8
14 5
15 5

Fig. 19 Confusion matrix for the learned
patterns with starting pattern with accuracy:
92.941% and error-rate: 7.059%.

We can see that accuracy improves by around 21 percent. One reason is the
greedy nature of the beam search. During the beam search only constraints that in-
crease the J-measure are added to the pattern, thus refinements which require multi-
ple steps to increase the measure are not found easily due to the myope of the search
algorithm. By providing the starting pattern, it is more likely that a critical constraint
can be placed right where it is needed, because the basic outline of the pattern is al-
ready present right from the beginning. As the intial pattern is constructed such that
it matches all histories of one class, the danger of overfitting is not increased despite
the high complexity of the pattern.

12 Frank Höppner, Sebastian Peter and Michael R. Berthold

6 Conclusion

We have investigated the problem of deriving classification rules for temporal or
sequential data. The employed classifier operates by successively refining a given
pattern to better distinguish between the classes. Instead of learning the patterns for
each class from scratch, we propose to derive a starting pattern, which consists of
those parts that are shared among all instances of the same class (a representative
for this class, which has not necessarily any discriminative power). The experimen-
tal evaluation has shown that this step not only improves the interpretability of the
obtained patterns, but also improves the classification results. Increasing the ex-
planatory power of the patterns [8] and reducing the complexity of searching the
starting pattern are topics to be addressed in future work.

References

[1] Allen, J.F.: Maintaining knowledge about temporal intervals. Communications
of the ACM 26(11), 832–843 (1983)

[2] Frank, A., Asuncion, A.: UCI machine learning repository. University of Cal-
ifornia, Irvine, School of Information and Computer Sciences (2010)

[3] Höppner, F., Klawonn, F.: Finding informative rules in interval sequences. In-
telligent Data Analysis – An International Journal 6(3), 237–256 (2002)

[4] Höppner, F., Topp, A.: Classification based on the trace of variables over time.
In: Proc. Int. Conf. Intelligent Data Engineering and Automated Learning
(IDEAL), no. 4881 in LNCS, pp. 739–749. Springer (2007)

[5] Kam, P.S., Fu, A.W.C.: Discovering temporal patterns for interval-based
events. In: Proc. of the 2nd Int. Conf. on Data Warehousing and Knowl. Dis-
covery, LNCS, vol. 1874, pp. 317–326. Springer (2000)

[6] Mörchen, F.: Time series knowledge mining. Ph.D. thesis, Philipps University
Marburg (2006)

[7] Peter, S., Höppner, F.: Finding temporal patterns using constraints on (partial)
absence, presence and duration. In: Proc. 14th Int. Conf. on Knowl.-Based and
Intel. Inf. & Eng. Sys. (KES). Springer (2010)

[8] Peter, S., Höppner, F., Berthold, M.R.: Pattern graphs: A knowledge-based tool
for multivariate temporal pattern retrieval. In: Proc. IEEE Conf. Intelligent
Systems. IEEE (2012)

[9] Shahar, Y., Musen, M.A.: RÉSUMÉ: A temporal abstraction system for patient
monitoring. Computers and Biomedical Research 26, 155–273 (1993)

[10] Smyth, P., Goodman, R.M.: An information theoretic approach to rule induc-
tion from databases. IEEE Trans. Knowledge Discovery and Engineering 4(4),
301–316 (1992)

[11] Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Jour-
nal of Computational Biology 1(4), 337–348 (1994)

