

Integration rationaler Funktionen

Seite 1 von 1

© 2000-2003 Prof. Dr.-Ing. T. Harriehausen

Version 3 27.11.2003

Rationale Funktionen sind stets integrierbar. Integrale rationaler Funktionen können stets durch elementare Funktionen ausgedrückt werden.

I Ganze rationale Funktionen (Polynome)

Polynome der Form $y = f(x) = \sum_{i=0}^{n} a_i \cdot x^i$ sind einfach integrierbar:

$$\int \left(\sum_{i=0}^{n} a_i \cdot x^i\right) dx = \left(\sum_{i=0}^{n} \frac{a_i}{i+1} x^{i+1}\right) + C$$
 (Bronstein #1)

II <u>Unecht gebrochen rationale Funktionen</u>

Unecht gebrochen rationale Funktionen lassen sich durch **Polynomdivision** zerlegen in ein **Polynom** (siehe I) und eine **echt gebrochen rationale Funktion** (siehe III). Das Integral der unecht gebrochen rationalen Funktion ist gleich der Summe der Integrale der beiden Teilfunktionen.

III Echt gebrochen rationale Funktionen

Echt gebrochen rationale Funktionen zerlegt man in eine **Summe von Teilbrüchen** ("**Partialbrüchen**") der Form

$$\frac{A}{(x-x_0)^k} \quad \text{mit } A, x_0 \in R, \quad k \in N^*$$
 (2)

oder

$$\frac{Ax + B}{(x^2 + px + q)^{\ell}} \quad \text{mit } A, B, p, q \in \mathbb{R}, \quad \ell \in \mathbb{N}^*$$
 (3)

<u>sowie einen gemeinsamen Faktor</u>, den Kehrwert des Hauptkoeffizienten des Nennerpolynoms (nicht vergessen!).

Die entstandene Summe von Teilfunktionen lässt sich einfach gliedweise integrieren:

Regeln zur Integration von Partialbrüchen

$$\int \frac{A}{(x - x_0)} dx = A \cdot \ln|x - x_0| + C$$
 (Bronstein #2)

$$\int \frac{A}{(x-x_o)^k} dx = \frac{A}{1-k} \cdot \frac{1}{(x-x_o)^{k-1}} + C \quad \text{für } k > 1 \text{ (Bronstein #1)}$$
 (5)

$$\int \frac{Ax + B}{x^2 + px + q} dx = \frac{A}{2} \cdot \ln|x^2 + px + q| + \frac{B - \frac{p \cdot A}{2}}{\sqrt{q - \frac{p^2}{4}}} Arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + C$$
(B. #44, 40) (6)

$$\int \frac{Ax + B}{(x^2 + px + q)^{\ell}} dx \quad \text{für } \ell > 1 \text{ siehe Bronstein #43}$$
 (7)