2

Binomischer Satz

sowie Binomische Formeln, Binomialkoeffizienten

Seite 1 von 1

© 2003 Prof. Dr.-Ing. T. Harriehausen, FH BS/WF

Version 1 29.9.2003

Betrachtet werden **Binome** (zweigliedrige Ausdrücke) der Form (a + b) mit $a, b \in \mathbb{R}$, d.h. sowohl a als auch b können ein negatives Vorzeichen enthalten.

Aus der Schule bekannt sind die drei binomischen Formeln

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a+b)(a-b) = a^2 - b^2$$

Die zweite binomische Formel ist ein einfacher Spezialfall der ersten (b < 0).

Die dritte binomische Formel spielt beim Rechnen mit komplexen Zahlen (für $a,b \in \mathbb{C}$) eine sehr wichtige Rolle (beim "konjugiert komplexen Erweitern") und ist damit essentiell für die Berechnung von Wechselstromschaltungen.

Der binomische Satz liefert den Wert eines Ausdruckes $(a + b)^n$ mit $a, b \in \mathbb{R}$ und $n \in \mathbb{N}$:

$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} \cdot a^{n-k} \cdot b^{k} = \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \dots + \binom{n}{n-1} a^{1} b^{n-1} + \binom{n}{n} a^{0} b^{n}.$$

Die Ausdrücke $\binom{n}{k}$ sind die **Binomialkoeffizienten**, gesprochen "**n über k**".

Binomialkoeffizienten sind für beliebige $n, k \in \mathbb{N}$ mit $k \le n$ einfach¹ zu berechnen mittels

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)...(n-k+1)}{k!}$$

Man setzt weiterhin $\binom{n}{k} = 0$ für k > n.

Die Binomialkoeffizienten lassen sich auch mit dem Pascalschen² Dreieck, siehe Bild 1,

ermitteln, das dem Bildungsgesetz $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$ gehorcht:

Bild 1: Pascalsches Dreieck

Aus Bild 1 folgt sofort: $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{pmatrix} n \\ 0 \end{pmatrix} = \begin{pmatrix} n \\ n \end{pmatrix} = 1$ und $\begin{bmatrix} n \\ 1 \end{pmatrix} = \begin{pmatrix} n \\ n-1 \end{pmatrix} = n$ sowie $\begin{bmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$

Für den Spezialfall a=1, b=x und |x|<<1 folgt aus dem binomischen Satz die wichtige Näherungsformel $(1+x)^n\approx 1+n\,x$, die nicht nur für $n\in \mathbb{N}$, sondern auch für $n\in \mathbb{R}$ gilt.

¹ Die Binomialkoeffizienten werden intensiv in der Wahrscheinlichkeitsrechnung eingesetzt. Dort kann es für sehr große Werte von n oder k bei Verwendung dieser Formeln zu Problemen kommen.

² Benannt nach dem französischen Mathematiker und Philosophen Blaise Pascal (1623-1662), der es "erfand". Das Prinzip war aber schon in Hochkulturen der Antike bekannt.