
Fundamentals of Firewire™

uestra
C O N S U L T I N G

SOFTWARE & EMBEDDED
SYSTEMS GROUP

Author:  John Canosa



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

#,QWURGXFWLRQ

We have all heard about the coming convergence of computers, consumer equipment and communications.  There
are many factors driving this convergence.  The incredible amount of processing power available for ridiculously
low costs and the vast amounts of information that is already available, with more being generated every day, are
two driving forces.  But communications is the real force that is drawing these separate market segments together.

A larger and larger portion of the new information being generated today is taking the form of multimedia.  Video,
still images and audio are becoming ubiquitous and causing an increasing thirst for easier, faster ways of
transferring information.  Convergence will happen when seamless, high speed communications becomes readily
available.  The IEEE 1394 protocol appears to be a strong contender for the communications channel that will
make this happen.

The IEEE 1394-1995 protocol had its genesis at Apple Computer, which still retains the Firewire trademark.  The
goals of the protocol are to provide easy to use, low cost, high speed communications.  In addition, the protocol is
very scalable, provides for both asynchronous and isochronous applications, allows for access to vast amounts of
memory mapped address space and, perhaps most important to convergence, allows peer-to-peer communication.

Some people see 1394 and USB as competitors for the communications channel of the future, but in reality they
are more complementary that competitive.  USB is a lower speed, lower cost, host based protocol.  While 1394
and USB may compete in some mid-range applications,  Figure 1shows that they will typically play in different
spaces.

ATTRIBUTESATTRIBUTES

LOW SPEEDLOW SPEED Interactive DevicesInteractive Devices
(Game, VR)(Game, VR)10 - 100 Kb/s10 - 100 Kb/s

HIGH SPEED
50 - 1000 Mb/s

Video
Disk
LAN

High Bandwidth
Very Low Latency
Ease of Use

1394
FOCUS

13941394
FOCUSFOCUS

Low costLow cost
Guaranteed Latency Guaranteed Latency 
Higher BandwidthHigher Bandwidth
Ease of UseEase of Use

MEDIUM SPEEDMEDIUM SPEED
500Kb/s - 10Mb/s500Kb/s - 10Mb/s

USB
FOCUS

USBUSB
FOCUSFOCUS

ISDN, POTS, PBX, ISDN, POTS, PBX, 
Audio, Limited Video,Audio, Limited Video,
Bulk TransferBulk Transfer

Very Low costVery Low cost
Ease of UseEase of Use
Dynamic AttachDynamic Attach
Multiple Peripherals Multiple Peripherals 

APPLICATIONSAPPLICATIONSPERFORMANCEPERFORMANCE

Figure 1  IEEE 1394 and USB Market Segmentation

There is sometimes confusion surrounding the alphabet  soup that seems to envelop the 1394 protocol.  The only
currently approved specification is the IEEE 1394-1995 specification.  This specification is the basis for future
extensions and enhancements.  1394-1995 supports transfer rates of 100, 200 and 400 Mbps.  As with many first
cuts at a standard, 1394-1995 left some things up to interpretation of the implementers of the specification.  This
caused some interoperability problems and has led to work on the 1394a specification.  The 1394a specification
provides some clarification on the original specification, changes some optional portions of the spec. to mandatory



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

and also adds some performance enhancements.  The 1394a specification is nearing completion and should be
approved in the near future – some semiconductor vendors are already claiming compliance to the new
specification.  In addition to the 1394a specification, work is progressing on the 1394b specification.  1394b will
provide for additional data rates of 800, 1600 and 3200 Mbps.  It will also provide for long haul transmissions via
both twisted pair and fiber optics as well as providing backward compatibility with the existing standard.  There
also had been work done by Intel on a protocol called 1394.2.  This also was to provide higher speed
communications but was not backward compatible with the existing specification.  Publicly, this work has since
been merged with 1394b development, but who knows what hot new technology might pop out of the Intel
Architecture Labs in the future.  This article will cover the 1394-1995 standard and will speak to some of the
enhancements in the 1394a revision.  Details of the 1394b protocol will be left for a future article, when the
specification is more firm.

7KH#7RSRORJ\

The 1394 protocol is a peer-to-peer network with a point to point signaling environment.  Nodes on the bus may
have several ports on them, each of these ports act as repeaters, retransmitting any packets that are received by
other ports within the node.  Figure 2  shows what a typical consumer may have attached to their 1394 bus.

Digital VCRSet Top BoxDigital
Camera

PC DVD-RAM

Printer

Figure 2  A Firewire Bus

Because 1394 is a peer to peer implementation, there is not a specific host required, such as a PC in USB.  In the
above figure, the Digital Camera could easily stream data to both the Digital VCR and the DVD-RAM without any
assistance from other devices on the bus.  There is the concept of a Cycle Master and Root Node, which is
discussed subsequently. The Cycle Master function does not require much added sophistication. The determination
of what device plays the Cycle Master role is determined dynamically and can change whenever a new device is
added or a bus reset occurs.

Configuration of the bus occurs automatically whenever a new device is plugged in.  Configuration proceeds from
leaf nodes (those with only one other device attached to them) up through the branch nodes.  A bus that has three
or more devices attached will typically, but not always, have a branch node become the Root Node.  Configuration
will be discussed in more detail later in this article.

A 1394 bus appears as a large memory mapped space with each node occupying a certain address range.  The
memory space is based to the IEEE 1212  Control and Status Register (CSR) Architecture with some extensions
specific to the 1394 standard.  Each node supports up to 48 bits of address space (256 TeraBytes ).  In addition,
each bus can support up to 64 nodes and the 1394 serial bus specification supports up to 1024 busses.  This gives a
grand total of 64 address bits, or support for a whopping total of 16 ExaBytes of memory space – enough for the
latest version of your favorite word processor and perhaps even a file or two!



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Bus 0Bus 0

Bus 1Bus 1

Bus 2Bus 2

Bus 3Bus 3

Bus 1023
(Local Bus)

Bus 1023
(Local Bus)

Node 0Node 0

Node 1Node 1

Node 2Node 2

Node 3Node 3

Node 63
(Broadcast)

Node 63
(Broadcast)

Initial
Memory
Space

Initial
Memory
Space

Private
Space
256MB

Private
Space
256MB

Reg. Space
256MB

Reg. Space
256MB

Initial Node
Space

Initial Node
Space

Initial
Units
Space

Initial
Units
Space

CSR
Architecture

CSR
Architecture

Serial
Bus Space

Serial
Bus Space

ROM
Space

ROM
Space

1024 Buses 63 Nodes
Node Addr

Space
Node Reg.

Space
Initial Node

Space

Figure 3   IEEE 1394 Address Space

7UDQVIHUV#DQG#7UDQVDFWLRQV

,VRFKURQRXV#DQG#$V\QFKURQRXV#7UDQVIHUV

The 1394 protocol supports both asynchronous and isochronous data transfers.  Isochronous transfers are always
broadcast in a one to one or one to many fashion.  There is no error correction or retransmission available for
isochronous transfers.  Up to 80% of the available bus bandwidth can be used for isochronous transfers.  The
delegation of bandwidth is tracked by a node on the bus that is occupying the role of Isochronous Resource
Manager.  This may or may not be the Root node or the Bus Manager.  The maximum amount of bandwidth an
isochronous device can obtain is only limited by the number of other isochronous devices that have already
obtained bandwidth from the isochronous resource manager.

Asynchronous transfers are targeted to a specific node with an explicit address.  Asynchronous transfers are not
guaranteed a specific amount of bandwidth on the bus, but they are guaranteed a fair shot at gaining access to the
bus when asynchronous transfers are allowed.  The maximum data block size for an asynchronous packet is
determined by the transfer rate of the device as shown in the following table.

Cable Speed Maximum Data Size
100 Mbps 512 Bytes
200 Mbps 1024 Bytes
400 Mbps 2048 Bytes

Table 1

Asynchronous transfers are acknowledged and responded to.  This allows error checking and retransmission
mechanisms to take place.  The bottom line is that if you are sending time critical, error tolerant data, such as a
video or audio stream, then isochronous transfers are the way to go.  If the data is not error tolerant, such as a disk
drive, then asynchronous transfers are preferable.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

)RXU#/D\HUV#RI#3URWRFRO

The 1394 specification defines four protocol layers, although not all of them are used during all transfers.  The
layers are shown in Figure 4.

Physical Layer
(Media I/F, Arbitration, Codec)

Link Layer
(Cycle Control, Packet Handling)

Hardware

Transaction
Layer

Drivers / DMA Controller

Serial Bus
Management

Node
Controller

Iso. Resource
Manager

Bus
Manager

Bus Management Asynch. Transfers Isoch. Transfers

Figure 4   IEEE 1394 Protocol Layers

3K\VLFDO#/D\HU

The physical layer of the 1394 protocol includes the electrical signaling, the mechanical connectors and cabling,
the arbitration mechanisms and the serial coding and decoding of the data being transferred or received.  The cable
media is defined as a three pair shielded cable.  Two of the pairs are used to transfer data, while the third pair
provides power on the bus.  The connectors are small six pin devices, although the 1394a also defines a 4 pin
connector for self powered leaf nodes.  The power signals are not provided on the 4 pin connector.  The baseline
cables are limited to 4.5 meters in length.  Thicker cables allow for longer distances.

The two twisted pair used for signaling, called out as TPA and TPB, are both bidirectional and are tri-state
capable.  TPA is used to transmit the strobe signal and receive data, while TPB is used to receive the strobe signal
and transmit data.  The signaling mechanism uses data strobe encoding, a rather clever technique that allows easy
extraction of a clock signal with much better jitter tolerance than a standard clock/data mechanism.  With Data
Strobe encoding, either the data or the strobe signal change in a bit cell, but not both of them.  Data Strobe
encoding is shown in Figure 5.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Data

Strobe

Data XOR
Strobe

Figure 5  Data Strobe Encoding

Configuration

The physical layer also plays a major role in the bus configuration and normal arbitration phases of the protocol.
Configuration consists of taking a relatively flat physical topology and turning it into logical tree structure with a
root node at its focal point.  A bus is reset and reconfigured whenever a device is added or removed – a reset can
also be initiated via software.  Configuration consists of bus reset and initialization, tree identification and self
identification.

Reset

Reset is signaled by a node driving both TPA and TPB to logic 1.  Because of the “dominant 1s”electrical
definition of the drivers, a logic “1” will always be detected by a port, even if its bidirectional driver is in the
transmit state.  When a node detects a reset condition on its drivers, it will propagate this signal to all of the other
ports that this node supports.  The node then enters the idle state for a given period of time to allow the reset
indication to propagate to all other nodes on the bus.  Reset clears any topology information within the node.

Tree Identification

The tree identification process is how the bus topology is defined. Lets take the example of our sample home
consumer network shown in Figure 2.   After reset, but before tree identification,  the bus has a flat logical
topology that maps directly to the physical topology.  After tree identification is complete, a single node has gained
the status of Root Node.  The tree identification proceeds as follows:

After reset, all leaf nodes (nodes with only one other device connected to them) present a Parent_Notify signaling
state on its Data and Strobe pairs.  Note that this is a signaling state, not a transmitted packet – the whole tree
identification process occurs in a matter of microseconds.  In our example, the Digital Camera will signal the  Set-
Top Box, the Printer will signal the Digital VCR and the DVD-RAM will signal the PC.  When a branch node
receives the a Parent_Notify signal on one of its ports, it marks that port as containing a child, and outputs a
Child_Notify signaling state on that port’s Data and Strobe pairs.  Upon detecting this state, the leaf node marks its
port as a parent port and removes the signaling, thereby confirming that the leaf node has accepted the child
designation.  At this point our bus appears as shown in Figure 6.  The ports marked with a P indicates that a device
that is closer to the Root Node is attached to that port, while a port marked with a C indicates that a node further
away from the Root Node is attached.  The port numbers are arbitrarily assigned during design of the device and
play an important part in the self identification process.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Digital VCRSet Top Box

2

Digital
Camera

PC

2

DVD-
RAMPrinter

1P

1C 3 1 2C 3 1 3C

1P 1P

Figure 6  Bus After Leaf Node Identification

After the leaf nodes have identified themselves, the Digital VCR still has 2 ports that have not received a
Parent_Notify, while the Set Top Box and the PC branch node both have only one port with an attached device
that has not received a Parent_Notify.  This being the case, both the Set Top Box and the PC start to signal a
Parent_Notify on the one port that has not yet received one.  In this case the VCR receives the Parent notify on
both of its remaining ports, which it acknowledges with a Child_Notify condition.  Since the VCR has marked all
of its ports as children, the VCR becomes the Root Node.  The final configuration is shown in Figure 7.

Digital VCR
Root Node

Set Top Box

2

Digital
Camera

PC

2

DVD-
RAMPrinter

1P

1C 3P

1C 2C 3C

1P 3C

1P 1P

Figure 7  Bus After Tree Identification Is Complete

Note that it is possible for two nodes to be in contention for Root Node status at the end of the process, in this case,
a random back-off timer is used to eventually settle on a Root Node.  It is also possible for a node to force itself to
become Root Node by delaying its participation in the Tree Identification process for a while.  Refer to references
1 and 2 for more details.

Self Identification

Once the Tree topology is defined, the Self Identification phase begins.  Self Identification consists of assigning
Physical IDs to each node on the bus, having neighboring nodes exchange transmission speed capabilities and
making all of the nodes on the bus aware of the topology that exists.  The self identification phase begins with the
Root Node sending an Arbitration Grant signal to its lowest numbered port.  In our example the Digital VCR is the
Root Node and it signals the Set Top Box.  Since the Set Top Box is a branch node, it will propagate the
Arbitration Grant signal to its lowest numbered port with a Child node attached.  In this case this is the Digital
Camera.  Since the Digital Camera is a leaf node, it cannot propagate the Arbitration Grant signal downstream any
further, so it assigns itself Physical ID 0 and transmits a Self-ID packet upstream.  The branch node (Set Top Box)
repeats the Self ID packet to all of its ports with attached devices.  Eventually the Self ID packet makes it way back
up to the Root Node, which proceeds to transmit the Self ID packet down to all devices on its higher numbered



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

ports.  In this manner, all attached devices receive the Self ID packet that was transmitted by the Digital Camera.
Upon receiving this packet all of the other devices increment their Self ID counter.  The Digital Camera will then
signal a Self ID Done indication upstream to the Set Top Box.  This indicates to the Set Top Box that all nodes
attached downstream on this port have gone through the Self ID process.  Note that the Set Top Box does NOT
propagate this signal upstream toward the Root Node because it has not completed the Self ID process.

The Root Node will then continue to signal an Arbitration Grant signal to its lowest numbered port which in this
case is still the Set Top Box.  Since the Set Top Box has no other attached devices, it assigns itself Physical ID 1
and transmits a Self ID packet back upstream.  This process continues until all ports on the Root Node have
indicated a Self ID Done condition.  The Root Node the assigns itself the next Physical ID – the Root Node will
always be the highest numbered device on the bus.  If we follow our example through we come up with the
following Physical Ids – Digital Camera = 0, Set Top Box = 1, Printer = 2, DVD-RAM = 3, PC = 4 and the Digital
VCR, which is the Root Node is assigned Physical ID 5.

Note that during the Self ID process, parent and children nodes are also exchanging their maximum speed
capabilities.  This process also exposes the Achilles’ Heel of the 1394 protocol.  Nodes can only transmit as fast as
the slowest device in between the transmitting node and the receiving node.   For example, if the Digital Camera
and the Digital VCR are both capable of transmitting at 400 Mbps, but the Set Top Box is only capable of
transmitting at 100Mbps, there is no way for the high speed devices to use the maximum rate to communicate
amongst themselves.  The only way around this problem is for the end user to reconfigure the cabling so the low
speed Set Top Box is not physically in between the two high speed devices.

Also during the Self ID process, all nodes wishing to become the Isochronous Resource manager will indicate this
fact in their self ID packet.  The highest numbered node that wishes  to become resource manager will achieve the
honor.

Normal Arbitration

Once the configuration process is complete, normal bus operations can begin.  In order to fully understand
arbitration a knowledge of the cycle structure of 1394 is necessary.

A 1394 cycle is a time slice with a nominal 125usec period.  The 8 KHz cycle clock is kept by the cycle master,
which is also the root node.  To begin a cycle, the cycle master broadcasts a cycle start packet, which all other
devices on the bus use to synchronize their timebases.

Cycle Start
Data = X

Ch A Ch B Ch C Pkt A

A
ck

Nominal 125us

Pkt B

A
ck

X =
Start Delay

Isochronous Gap
0.04 - 0.05us

Subaction (Asynch) Gap
10us

Pkt C

A
ck

Cycle
Synch

Cycle
Synch

Cycle N

Figure 8   Typical 1394 Cycle



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Immediately following the Cycle Start packet, devices that wish to broadcast their isochronous data may arbitrate
for the bus.  Arbitration consists of signaling your parent  node that you wish to gain access to the bus. The parent
nodes in turn signal their parents and so on until the request reaches the Root Node.  In our example, suppose the
Digital Camera and the PC wish to stream data over the bus.  They both signal their parents that they wish to gain
access to the bus.  Since the PC’s parent IS the Root Node, its request is received first and it is granted the bus.
From this scenario, it is evident that the closest device to the Root Node wins the arbitration.  Since Isochronous
channels can only be used once per cycle, when the next Isochronous Gap occurs, the PC will no longer participate
in the arbitration.  This allows the Digital Camera to win the arbitration this time.  Note that the PC could have
more than one Isochronous channel, in which case it would win the arbitration until it had no more channels left.
This points out the important role of the Isochronous resource manager – it will not allow the allotted isochronous
channels to require more bandwidth then is available.

When the last isochronous channel has had transmitted its data, the bus goes idle waiting for another isochronous
channel to begin arbitration.  Since there are no more isochronous devices left waiting to transmit, the idle time
extends longer than the isochronous gap until it reaches the duration defined as the subaction (or asynchronous)
gap.  It is at this time that asynchronous devices may begin to arbitrate for the bus.  Arbitration proceeds in the
same manner, with the closest device to the Root Node winning arbitration.

This brings up an interesting scenario – since asynchronous devices can send more than one packet per cycle, it
might be possible for a device closest to the Root Node (or the Root Node itself) to hog the bus by always winning
the arbitration.  This scenario is dealt with using what is called the fairness interval and the Arbitration Rest gap.
The concept is simple – once a node wins the asynchronous arbitration and delivers its packet, it clears its
arbitration enable bit.  When this bit is cleared, the physical layer no longer participates in the arbitration process,
giving devices further away from the Root Node a fair shot at gaining access to the bus.  When all devices wishing
to gain access to the bus have had their fair shot, they all wind up having their arbitration enable bits cleared,
meaning no one is trying to gain access to the bus.  This causes the idle time on the bus to go longer than the 10us
subaction gap until it finally reaches 20us, which is called the arbitration reset gap.  Once the idle time reaches this
point all devices may reset their arbitration enable bits and arbitration can begin all over again.

/LQN#/D\HU

The Link Layer is the interface between the transaction layer and the physical layer.  The Link Layer is responsible
for checking  received CRCs and calculating and appending the CRC to transmitted packets.  In addition, since
isochronous transfers do not use the transaction layer, the Link Layer is directly responsible for sending and
receiving isochronous data. The Link Layer also examines the packet header information and determines the type
of transaction that is in progress.  This information is then passed up to the transaction layer.  The interface
between the Link Layer and the Physical Layer is listed as an informative (not required) Appendix in the 1395-
1995 specification.  In the 1394a addendum, this interface becomes a required part of the specification.  This was
done to promote interoperability amongst the various 1934 chip vendors.

The Link Layer to Physical Layer interface consists of a minimum of 17 signals that must be either magnetically or
capcitively isolated from the PHY.   These signals are defined in Table 2.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Signal Name Source Description
LReq Link Layer Link Request – used to initiate a request to

send a packet as well as a request to read
directly from a PHY register.

SClk Physical Layer 49.152MHz clock used to synchronize data
readout.  (The frequency may change
depending on data rates with 1394b)

Data[0:7] Either Data – higher transfer speeds use an
increasing number of bits:

100Mbps – D[0:1]
200Mbps – D[0:3]
400Mbps – D[0:7]

Note that the width of this data bus may
exspand to 16 bits with 1394b.

Ctl[0:1] Either Control Interface – Defines what state the
interface is in.

LPS Link Layer Link Power Status – Indicates that the Link
Layer Controller is powered.

Link On Physical Layer Indicates that the Physical Layer has been
powered on.

Direct Neither Indicates that no isolation barrier exists.
Backplane Physical Layer High if physical layer is a backplane

implementation
Clk25 Neither Indicates that SClk is only 24.576 MHz –

valid in a backplane implementation only.

Table 2

A typical Link Layer implementation has the PHY interface, a CRC checking and generation mechanism, transmit
and receive FIFOs, interrupt registers, a host interface and at least one DMA channel.

7UDQVDFWLRQ#/D\HU

The transaction layer is used for asynchronous transactions.  The 1394 protocol uses a request – response
mechanism, with confirmations typically generated within each phase.  There are several types of transactions
allowed.  They are listed as follows:

• Simple Quadlet (4 byte) Read
• Simple Quadlet Write
• Variable Length Read
• Variable Length Write
• Lock Transactions

Lock transactions allow for atomic swap and compare and swap operations to be performed.

Asynchronous packets have a standard header format along with an optional data block.  The packets are
assembled and dis-assembled by the Link Layer controller.  Figure 9 shows the format of a typical asynchronous
packet.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Destination ID TL RT TCODE PRI

Source_ID Destination_Offset

Destination_Offset

Packet Type Specific Data

Header_CRC
Optional Data Block

Last Quadlet of Optional Data Block

CRC of Optional Data Block

.

.

.

Figure 9  Asynchronous Packet Format

Name Description
Destination_ID The concatenation of the Bus and Node address of the intended node.

All ones indicate a broadcast transmission.
TL Transaction Label specified by the requesting node.  This value is also

used in the response packet.
RT Retry Code that defines whether this is a retry and what retry

mechanism is being used.
TCODE Transaction Code defines the type of transaction (Read request, read

response, Acknowledge, etc..)
PRI Priority – used only in backplane environments

Source_ID Specifies Bus and Node that generated this packet.
Destination_Offset The address location within the destination node that is being accessed.

Packet type Specific Data Can indicate data length for block reads and writes, or contain actual
data for a quadlet write request or quadlet read response.

Header_CRC CRC Value for the Data
Optional Data Quadlet aligned data specific to the type of the packet.

Optional Data CRC CRC for the Optional Data

Transactions can be split, concatenated or unified.  A split transaction is shown in Figure 10.  The split transaction
occurs when a device cannot respond fast enough to the transaction request.  When a request is received, the node
responds with an acknowledge packet.  An acknowledge packet is sent after every asynchronous packet. In fact the
acknowledging device does not even have to arbitrate for the bus, control of the bus is automatic after receiving an
incoming request or response packet.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Responder NodeRequester Node

Transaction
Layer

Transaction
Layer

Link
Layer

Link
Layer

Link
Request

Link
Indication

Read
Indication

Response
(Pending)

Request
Packet

Read
Request

Ack
PacketConfirm

(Pending)

Link
Request

Link
IndicationRead

Confirmation
With
Data Response

(Complete)

Response
Packet

Read
Response
(Complete

with
Data)

Ack
Packet

Figure 10   A Split Transaction

In Figure 10, the responder node sends the Acknowledge back and then prepares the data that was requested.
While this is going on, other devices may be using the bus.  Once the responder node has the data ready, it begins
to arbitrate for the bus in order to send out its response packet containing the desired data.  The requester node
receives this data and returns an acknowledge packet (without needing to re-arbitrate for the bus).

If the responder node can prepare obtain the requested data fast enough, the entire transaction can be concatenated.
This removes the need for the responding node to re-arbitrate for the bus after the acknowledge packet is sent.

For data writes it is also possible for the acknowledgement to be the response to the write.  This is the case in a
unified transaction.  If the responder can accept the data fast enough, its acknowledge packet can have a
transaction code of complete instead of pending.  This eliminates the need for a separate response transaction
altogether.  Note that Unified Read and Lock transactions are not possible, the Acknowledge packet cannot return
data.  Figure 11 shows the different types of transactions supported by 1394.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Arb Req Pkt Ack Pkt

A
ck

 G
ap

Data Prefix

Data End

S
ub

ac
tio

n
G

ap

Unrelated SubAction

Arb Req Pkt Ack Pkt

A
ck

 G
ap

Data Prefix

Data End

S
ub

ac
tio

n
G

ap

Request SubAction

Arb Resp Pkt Ack Pkt

A
ck

 G
ap

Data Prefix

Data End

S
ub

ac
tio

n
G

ap

Resonse SubAction

Split Transaction

Arb Req Pkt Ack Pkt
A

ck
 G

a
p

Data Prefix

Data End

Request SubAction

Concatenated Transaction

Resp Pkt Ack Pkt

A
ck

 G
a

p

Data Prefix

Data End

S
u

b
a

ct
io

n
G

a
p

Response SubAction

A rb R e q  P k t A c k  P k t

A
c

k
 G

a
p

D a ta  P re fix

D a ta  E n d

U n ified  W rite  T ran sa c tio n

Figure 11  IEEE 1394 Transaction Types

1394a Arbitration Enhancements

The 1394a addendum adds three new types of arbitration to be used with asynchronous nodes.

Acknowledged Accelerated Arbitration – when a responding node also has a request packet to transmit, the
responding node can immediately transmit its request without re-arbitrating for the bus.  Normally the responding
node would have to go through the normal arbitration process again.

Fly-by Arbitration – Nodes that contain several ports must act as a repeater on its active ports.  A multiport node
may use fly-by arbitration on packets that do not require acknowledgement (isochronous packets and acknowledge
packets).  When a node using this technique is repeating a packet UPSTREAM toward the Root Node, it may
concatenate an identical speed packet to the end of the current packet.  Note that asynchronous packets may not be
added to isochronous packets.

Token-style Arbitration –token style arbitration requires a group of cooperating nodes.  When the cooperating
node closest to the Root Node wins a normal arbitration it can pass the arbitration grant down to the node furthest
from the root.  This node sends a normal packet, all of the cooperating nodes can use fly-by arbitration to add their
packets to the original packet as it heads upstream.

%XV#0DQDJHPHQW

Bus management on a 1394 bus involves several different responsibilities that may be distributed among more
than one node.  Nodes on the bus must assume the role of Cycle Master, Isochronous Resource Manager and Bus
Manager.



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

Cycle Master

The cycle master initiates the 125us cycles.  The Root Node MUST be the cycle master, if a node that is not cycle
master capable becomes Root Node, the bus is reset and a node that is cycle master capable is forced to be the
root.  The cycle master broadcasts a cycle start packet every 125us.  Note that it is possible for a cycle start to be
delayed while an asynchronous packet is being transmitted or acknowledged.  The cycle master deals with this by
including the amount of time that the cycle was delayed in the cycle start packet.

Isochronous Resource Manager

The isochronous resource manager must be isochronous transaction capable.  In addition the isochronous resource
manager must also implement several optional registers.  These registers include the Bus Manager ID register, the
bus bandwidth allocation register and the channel allocation register.  Isochronous channel allocation is performed
by a node that wishes to transmit isochronous packets.  These nodes must allocate a channel from the channel
allocation register by reading the bits in the 64 bit register.  Each channel has one bit associated with it – channels
are available if the bit is set to a logic “1”.  The requesting node sets the first channel bit available to a logic “0”
and uses this bit number as the channel ID.

In addition, the requesting node must examine the Bandwidth Available Register to determine how much
bandwidth it can consume.  The total amount of bandwidth available is 6144 allocation units.  One allocation unit
is the time required to transfer one quadlet at 1600Mbps.  There is a total of 4915 allocation units available for
isochronous transfers if any asynchronous transfers are used.  Nodes wishing to use isochronous bandwidth must
subtract the amount of bandwidth needed from the Bandwidth Available Register.

Bus Manager

A bus manager has several functions including publishing a topology map and a speed map, power management
and optimizing bus traffic.  The speed map is used by nodes to determine what speed it can use to communicate
with other nodes.  The topology map may be used by nodes with a sophisticated user interface that could instruct
the end user on the optimum connection topology to enable the highest throughput between nodes.  The bus
manager is also responsible for determining whether the node that has become Root Node is cycle master capable.
If it is not, the bus manager searches for a node that is cycle master capable and forces a bus reset that will select
that node as Root Node.  There may not always be a bus manager capable node on a bus, in this case at least some
of the bus management functions are performed by the isochronous resource manager.

+DUGZDUH#DQG#6RIWZDUH#6XSSRUW

+DUGZDUH

Several manufacturers make devices for engineers designing devices that support IEEE 1394.  Integrated circuit
providers typically provide a chipset that includes a Link Layer controller and a Physical Layer controller.  One of
the goals of the 1394a addendum is to provide interoperability among the various Link Layer and Physical Layer
controllers.  Some of the available ICs and cores are shown in Table 3.

Link Layer Controllers
Manufacturer Part Number Description

Fujitsu Microelectronics MB8661x Combined Link/PHY Core & ICs
IBM IBM21S650PFA PCI Based Link Layer Controller



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

IBM21S550PFB Generic Bus Interface Link Layer Controller
Innovative Semiconductor SL75x Link Layer Cores

Philips Semicondutor PDI1394L11 A/V Link Layer Controller
Phoenix Technologies VirtualLink 1394a Compatible Link Layer Cores

Sand 1394 Device
Controller

1394 Link Layer Core

Symbios SYM13FW600 PCI Bus Interface Link Layer
SYM13FW500 1394 to ATA/ATAPI Interface

Texas Instruments TSB12LV21B
TSB12LV22
TSB12LV31

LynxHCI (PCI) IC
OHCI (PCI) IC

General Purpose Bus Interface IC
Physical Layer Controllers

Manufacturer Part Number Description
Fujitsu Microelectronics MB8661x Combined Link/PHY Core & ICs

IBM IBM21S85xPFD 400Mbps 1 and 3 port devices
IBM21S760PFD 200Mbps 1 and 3 port devices

Innovative Semiconductor SL75x Physical Layer Cores
Philips Semiconductor PDI1394P11 Physical Layer IC

MacroDesigns - Physical Layer Cores
Phoenix Technologies VirtualLink 100,200 &400Mbps 1394a Compatible Cores

Sand 1394 CPHY 1394 Cable Physical Layer Core
Symbios SYM13FW403 1394 Cable PHY Interface IC

Texas Instruments TSB11C01
TSB11LV01
TSB14C01A

TSB21LV03A
TSB41lV0x

Up to 400Mbps PHY ICs

Table 3

As well, complete PCI based cards that plug in to a PC backplane are available from companies such as Adaptec,
Sony and Texas Instruments.

6RIWZDUH#6XSSRUW

IEEE 1394 is directly supported in the new Windows Driver Model (WDM) which is used in Windows 98 and
will be available in Windows NT 5.0.  In order for chipsets and devices to support the drivers provided in the new
versions of Windows, several members of the 1394 Trade Association have banded together to create the 1394
Open Host Controller Interface (OHCI) Specification.  The OHCI provides a Link Layer controller as well as Bus
Management functionality.  In addition, the OHCI defines several DMA controllers for Asynchronous and
Isochronous  transactions.  These controllers provide registers that a standard 1394 driver provided by Microsoft
can use to configure the controller and schedule transactions.

Microsoft provides WDM Streaming drivers for supporting Audio and Video devices such as DVD players,
MPEG decoders, tuners and audio codecs.  These streaming drivers allow low latency support for isochronous
channels.  The drivers minimize transitions between user mode and kernel mode which significantly reduces the
overhead for driver calls and data movement.

For Storage Devices, Printers and Scanners, Windows NT 5.0 supports the Serial Block Protocol (SBP-2).
Microsoft recommends that devices be written to support the SCSI command set so the device can use the existing



FUNDAMENTALS OF FIREWIRE

uest ra
C O N S U L T I N G

QUESTRA CONSULTING                                                                                        SOFTWARE AND EMBEDDED SYSTEMS GROUP

SCSI class driver that sits on top of the SBP-2 driver.  If the vendor does not support the SCSI protocol, they will
need to write their own Class driver to support their own command set.

In addition to the SBP-2 specification for storage devices, there are other standard data formats that ride on top of
1394 that are in various stages of completion.  These include the Tailgate specification that defines a method for
adapting ATA/ATAPI controllers to 1394, a Digital Video (DV) standard, the Digital Still Image working group, a
Printer Protocol and an Industrial Control and Instrumentation group.

Embedded systems designers have also seen some RTOS vendors claim support for 1394 including Integrated
Systems pSOS and Wind River’s VxWorks among others.  These OS vendors typically support a third party
protocol stack that has been ported to their OS.  In the case of 1394,  Zayante, Award Software and Technology
Rendevous each have a 1394 stack that they claim is OS independent.  Windows CE does not currently have
native support 1394 but it will undoubtedly support it in the very near future. There is third party support to fill the
existing gap.

&RQFOXVLRQ

The IEEE 1394 protocol, along with USB, Ethernet and IrDA will be the data channels of the future.  Any
embedded system that needs to share information (and what applications won’t?) will use at least one of the
aforementioned communication methods.   IEEE 1394 provides the highest throughput as well as providing
isochronous capability and peer to peer support.  These features make it a prime candidate as the driver for the
consumer, computer and communications convergence.  Proposed enhancements and additions to the protocol are
targeting higher speeds, home networking, fiber transmission wireless IR transmission.  As more devices look to
support 1394, the prices for silicon support are dropping rapidly, which will in turn cause more engineers to design
in the protocol.

5HIHUHQFHV#)#8VHIXO#6LWHV

1. “FireWire System Architecture” – Don Anderson, MindShare Inc., Addison-Wesley, ISBN 0-201-69470-0

2. IEEE 1394-1995 Serial Bus Specification

3. ISO/IEC 13213 (ANSI / IEEE 1212) CSR Architecture Specification

4. www.1394ta.org – The 1394 Trade Association Home Page

5. www.microsoft.com/hwdev/busbios/1394support.htm – Microsoft’s 1394 Support

6. ftp://ftp.austin.ibm.com/pub/chrptech/1394ohci – The 1394 OHCI Specification

7. http://www.ti.com/sc/docs/msp/1394/1394.htm – TI’s 1394 Home Page


	back: 


