
 
Introduction to 

VHDL 
 

Professor Gregory Moss 
Electrical & Computer Engineering Technology 

Purdue University 

 1



VHDL 
VHSIC Hardware Description Language 

(Very High Speed Integrated Circuit) 
 

IEEE Standard 1076-1993 (& others) 
 

concurrent language  ⇒  circuit description 
documentation  →  simulation  →  synthesis 

 
describes a model for a digital device 

• gate ⇔ system 
• specify external view    &    internal view 

↓ ↓ 
interface body 

input/output ports functionality 
entity architecture 

 2



3

OUTPUTS 

B.O.L. 

Entity & Architecture 

B.O.L. = “Blob Of Logic” 
 

INPUTS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 4

Basic VHDL building blocks 

A VHDL design entity is a pairing of: 
entity declaration   

• describes the design I/O 

architecture body   
• describes the function of a design entity   
• contains any combination of behavioral, 

structural, or dataflow descriptions 
 
 
 
 
 
 
 
 
 
 

Architecture body

Functional 
definition 

Entity 

Entity declaration 

Interface 
declaration



Entity Declaration 
inputs outputs

block diagram

simple

 
Describes the block diagram of the circuit 

• Name of the circuit 

• Names & types of the inputs 

• Names & types of the outputs 

 5



Architecture Body 

B

A

C

D
E

X

Y

Z

 
Use statements to describe the circuit functionality 

 6



ENTITY  simple  IS 
PORT ( 

  a, b, c, d, e   :IN BIT; 

  x, y, z      :OUT BIT); 

END  simple; 

ARCHITECTURE  example  OF  simple  IS 

BEGIN 

 --  signal assignment statements (Boolean) 

 x  <=  (a OR c) AND NOT b; 

 y  <=  (a AND b) OR (NOT a AND c); 

 z  <=  d OR e; 

END  example;  

 7



Concurrent vs. Sequential Statements 
 

 

 8



Concurrent Statements 
• execute at same time – in parallel 

• order independent 

• execute outside of a process 

Sequential Statements 
• execute one at a time – in sequence 

• order dependent 

• execute inside a process 

• IF, CASE, FOR LOOP 

 9



2-input Decoder 

 10

 



ENTITY decoder2x4 IS 
PORT ( 
 d   :IN BIT_VECTOR (1 DOWNTO 0); 
 enable :IN BIT; 
 y   :OUT BIT_VECTOR (0 TO 3) 
); 
END decoder2x4; 
 

 11



ARCHITECTURE boolean OF decoder2x4 IS 
SIGNAL d1bar, d0bar  :BIT; 

-- declare "buried" nodes 
 
BEGIN 

-- write Boolean expressions for outputs 
-- using concurrent signal assignments 

y(3) <= NOT (d(1) AND d(0) AND enable); 
y(2) <= NOT (d(1) AND d0bar AND enable); 
y(1) <= NOT (d1bar AND d(0) AND enable); 
y(0) <= NOT (d1bar AND d0bar AND enable); 

-- decoder with active-low outputs 
-- order of statements does not matter 

d1bar <= NOT d(1); 
d0bar <= NOT d(0); 
 
END boolean; 

 12



Simulation Results 
 

 

 13



ARCHITECTURE conditional OF decoder2x4 IS 
BEGIN 
-- conditional signal assignment statement 
 y <= "0111" WHEN  

(d = "00" AND enable = '1') ELSE 
 
   "1011" WHEN  

(d = "01" AND enable = '1') ELSE 
 
   "1101" WHEN  

(d = "10" AND enable = '1') ELSE 
 
   "1110" WHEN  

(d = "11" AND enable = '1') ELSE 
 
   "1111"; 
END conditional; 

 14



ARCHITECTURE selected OF decoder2x4 IS 
SIGNAL inputs :BIT_VECTOR (2 DOWNTO 0); 

-- define new 3-bit signal array 
-- “buried” within entity 

BEGIN 
 inputs <= enable & d; 
 -- concatenate bits together for new array 
 
 -- selected signal assignment statement 
 WITH inputs SELECT 
  y <= "0111" WHEN "100", 
    "1011" WHEN "101", 
    "1101" WHEN "110", 
    "1110" WHEN "111", 
    "1111" WHEN OTHERS;  -- default 
 
END selected; 

 15



ARCHITECTURE behavior OF decoder2x4 IS 
BEGIN 
PROCESS (d, enable)  -- sensitivity list 
-- invoke process if listed inputs change 
BEGIN 
 IF enable = '1' THEN 
  CASE d IS 
   WHEN "00" =>  y <= "0111"; 
   WHEN "01" =>  y <= "1011"; 
   WHEN "10" =>  y <= "1101"; 
   WHEN "11" =>  y <= "1110"; 
  END CASE; 
 ELSE       y <= "1111"; 
 END IF; 
 
END PROCESS; 
END behavior; 

 16



Ports 

I/O signals in an entity declaration 

port declaration → set of ports defined for an entity  

each port must have: 
name (identifier) 
direction (mode)  

[in, out, buffer, inout] 
data type  

[bit, bit_vector, integer, Boolean,  
std_logic, std_logic_vector, enumerated] 

 17



Data Types 

• every signal must have a data type 

• data type defines a set of legal values 

Synthesizable Data Types: 
BIT single bit 
BIT_VECTOR array of bits 
INTEGER numerical quantity 

ENUMERATED define own type 
STD_LOGIC single bit 
STD_LOGIC_VECTOR  array of bits 

 18



Predefined Standard Data Types 

• BOOLEAN (FALSE, TRUE) 
• BIT (‘0’, ‘1’) 
• BIT_VECTOR (“0101”, “10001101”) 
• CHARACTER (‘A’, ‘a’, ‘Z’, ‘5’) 
• STRING (“Hi!”, “Bye”) 
• INTEGER (345, -1) 
• REAL (3.14159, -7.0) 
• TIME (10ns, 25ms) 

 19



Array 
• collection of objects (each one is the same type) 

• two standard types:  bit vector & string 

• do not represent a numerical value 

• range is defined when array is declared  
using “to” or “downto” 

• direction of a “slice” of an array must match the 
direction in which array is declared 

• arrays are assigned to each other by matching 
their position within the array 

• single bits and vectors can be concatenated 
together (using “&” operator) 

 20



VHDL Example signal 
Data types assignment statement

BIT sig1  <=  ‘1’; 

BIT_VECTOR arrayx  <=  “1011”; 

INTEGER count  <=  count + 1; 

ENUMERATED mytype  <=  idle; 

 
To make an assignment to a signal, the data types on either 
side of the signal assignment operator must be the same 

 21



VHDL Objects 
Carry data from place to place in a design 

• Signals  
→ represent interconnection wires that  
   connect component instantiation  
   ports together 

• Variables  
→ used for local storage of temporary data  
→ visible only inside a process 

• Constants  
→ used to name specific values 
→ can be declared globally, 
   within an architecture, 
   or within a process 

 22



Signals 
• Like a “wire” inside the circuit (architecture) 
• Local signals → visible within the entire architecture 
• “Buried” circuit nodes 
• Declared before BEGIN 
• Can be used in a PROCESS sensitivity list 
• Signal assignment operator <= 
 

ARCHITECTURE  ckt1  OF  this_one  IS 

SIGNAL  pets   :BIT; 

BEGIN 

 pets  <=  cats AND dogs; 

 23



Variables 
• Local storage of temporary data 

• Only declared inside of a PROCESS 

• Only visible inside the PROCESS 

• Variable assignment operator := 
 
ARCHITECTURE  ckt2  OF  that_one  IS 
BEGIN 
PROCESS (a, b) 
VARIABLE  f1    :BIT; 
BEGIN 
 f1  :=  NOT a AND b; 

 24



Process 
• Contains sequential statements (IF, CASE) 

• Does not execute continuously 

• “Invoked” by an “event” on a signal in the 
“sensitivity list” 

• Statements are executed in sequence when a 
change occurs in a signal in the sensitivity list 

• Outputs are “updated” when a process 
“suspends” at “END PROCESS” 

• Multiple processes interact concurrently 

 

 25



Design Units 
Smallest item in VHDL that you can compile: 

• entity 
• architecture 
• configuration 
• package 
• package body 

contains body (algorithm) of procedures 
or functions for a package 

 
VHDL design file is compiled into a “library” storage 
area referenced as “work” 

 26



Package 
contains a collection of definitions that may be 
referenced by many designs at the same time 

• global signals 

• constant values 

• user defined data types 

• component declarations 

• subprograms of VHDL code shared 
between different designs  
→ Package Body 

 27



PACKAGE  global_defs  IS 
CONSTANT  high   :BIT    := ‘1’; 
CONSTANT  twelve  :INTEGER  := 12; 
TYPE  mytype  IS  

(idle, state1, state2, state3, state4); 
END  global_defs; 
 

USE  work.global_defs.ALL; 

 
USE  work.global_defs.twelve; 

 
USE  work.global_defs.mytype; 

 
-- “work” is the default library for design units 
 

 28



Library 
Library statement loads library so contents are 
available when compiling a source file 
Use statement makes contents of specified library 
(packages or other design units) visible to design 
units in the current source file 
If you only use work library, then you just need to 
specify use statement 

 29



LIBRARY ieee; 
USE IEEE.STD_LOGIC_1164.ALL; 

--  to process “standard logic” types, their  
--  declarations must be made visible to the  
--  entity by way of library and use clauses 
 
 
ENTITY example IS 
PORT ( 

a,b :IN STD_LOGIC; 
c  :IN STD_LOGIC_VECTOR (3 DOWNTO 0); 
z  :OUT STD_LOGIC 

); 
END example; 
 
 

 30



Standard Logic – IEEE Standard 1164 
Defines Multi-Value Logic (MVL) 

Provides powerful simulation & debugging tool for designers 

U uninitialized 
X unknown ⎫ 
0 logic 0 ⎬ strong drive 
1 logic 1 ⎭ 
Z high impedance 
W unknown ⎫ 
L logic 0 ⎬ weak drive 
H logic 1 ⎭ 
- don’t care 

 31



VHDL Operators 
Logical (and    or    nand    nor    not    xor) 
Relational (<    >    =    <=    >=    /=) 
Arithmetic (+    -    *    /    **    abs) 

[integer, real, time data types] 
 

 32



33

entity entity-name is 
port (list-of-interface-ports); 

end entity-name; 
-- this is a comment line 
 
architecture architecture-name of entity-name is 

[architecture-item-declarations] 
begin 

concurrent-statements: 
process-statement 
block-statement 
concurrent-procedure-call-statement 
concurrent-assertion-statement 
concurrent-signal-assignment-statement 
component-instantiation-statement 
generate-statement 

end architecture-name ; 

 



 34

[process-label:] process [(sensitivity-list)] [is] 
[process-item-declarations] 

begin 
sequential-statements: 

variable-assignment-statement 
signal-assignment-statement 
wait-statement 
if-statement 
case-statement 
loop-statement 
null-statement 
exit-statement 
next-statement 
assertion-statement 
report-statement 
procedure-call-statement 
return-statement 

end process [process-label] ; 
 



 -- 2-channel multiplexer 
ENTITY mux2to1 IS 
PORT (a, b  :IN BIT; 

 s    :IN BIT; 
   y    :OUT BIT); 
END mux2to1; 
 
 
ARCHITECTURE ex1 OF mux2to1 IS 
BEGIN 
 y <= a WHEN s = ‘0’ ELSE b; 
 -- conditional signal assignment 
END ex1; 
 
 

 35



ARCHITECTURE ex2 OF mux2to1 IS 
BEGIN 
PROCESS (a, b, s) 
BEGIN 

IF s = ‘0’ THEN y <= a;  -- IF statement 
ELSE      y <= b; 
END IF; 

END PROCESS; 
END ex2; 
 
 
 -- 2-channel, 4-bit multiplexer 
ENTITY mux2to1 IS 
PORT (a, b  :IN BIT_VECTOR (3 DOWNTO 0); 

 s    :IN BIT; 
   y    :OUT BIT_VECTOR (3 DOWNTO 0)); 
END mux2to1; 

 36



ENTITY mux4to1 IS  -- 4-channel, 4-bit MUX 
PORT (a, b  :IN BIT_VECTOR (3 DOWNTO 0); 

 c, d  :IN BIT_VECTOR (3 DOWNTO 0); 
 s    :IN BIT_VECTOR (1 DOWNTO 0); 

   y    :OUT BIT_VECTOR (3 DOWNTO 0)); 
END mux4to1; 
ARCHITECTURE ex3 OF mux4to1 IS 
BEGIN 
PROCESS (a, b, c, d, s) 
BEGIN 

CASE s IS 
WHEN “00”  =>  y <= a; 
WHEN “01”  =>  y <= b; 
WHEN “10”  =>  y <= c; 
WHEN “11”  =>  y <= d; 

END CASE; 
END PROCESS; 
END ex3; 
 37



4-channel, 4-bit MUX Simulation 
 

 

 38



 -- transparent latch 
ENTITY d_latch IS 
PORT (d, enable  :IN BIT; 
   q      :OUT BIT); 
END d_latch; 
 
 
ARCHITECTURE level_enabled OF d_latch IS 
BEGIN 
PROCESS (d, enable) 
BEGIN 

-- enabled with high logic level 
IF enable = ‘1’ THEN  q <= d; 
END IF; 

-- memory is implied, no else statement 
END PROCESS; 
END level_enabled; 

 39



 -- clocked D flip-flop 
ENTITY dflipflop IS 
PORT (d, clock   :IN BIT; 
   q      :OUT BIT); 
END dflipflop; 
 
ARCHITECTURE edge_triggered OF dflipflop IS 
BEGIN 
PROCESS (clock) 
BEGIN 

-- triggers on rising edge 
IF (clock = ‘1’ AND clock’EVENT) THEN 
  q <= d; 
END IF; 

-- ’EVENT signal attribute 
END PROCESS; 
END edge_triggered; 

 40



Transparent D Latch Simulation 
 

 
 
 
 

Clocked D Flip-flop Simulation 
 

 

 41



LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
        -- using Standard Logic 
 
ENTITY dflipflop IS 
PORT (d, clock   :IN STD_LOGIC; 
   q      :OUT STD_LOGIC); 
END dflipflop; 
ARCHITECTURE edge_trig OF dflipflop IS 
BEGIN 
PROCESS (clock) 
BEGIN 
IF (RISING_EDGE(clock)) THEN  q <= d; 

-- also FALLING_EDGE() detection 
END IF; 
END PROCESS; 
END edge_trig; 

 42



ENTITY d_ff IS 
PORT (data, clock, preset, clear :IN BIT; 

 q_out         :OUT BIT); 
END d_ff; 
 
ARCHITECTURE asynchronous OF d_ff IS 
BEGIN 
PROCESS (clock, preset, clear) 
BEGIN 
 -- priority order: clear, preset, clock 
 IF (clear = '0')  THEN  q_out <= '0'; 
 ELSIF (preset = '0') THEN q_out <= '1'; 
 ELSIF (clock'EVENT AND clock = '0') THEN  
            q_out <= data; 
 END IF; 
END PROCESS; 
END asynchronous; 

 43



 -- mod-16 up/down binary counter 

ENTITY updncntr IS 
PORT ( 
 clock, dir :IN BIT; 
 q     :OUT INTEGER RANGE 0 TO 15 
   -- output q will need 4 bits 
); 
END updncntr; 
 
 
ARCHITECTURE binary OF updncntr IS 
BEGIN 
 
PROCESS (clock) -- clock change? 
 

VARIABLE count  :INTEGER RANGE 0 TO 15; 
 -- create a variable for counter value 

 44



 
BEGIN 
 IF (clock'EVENT AND clock = '1') THEN 
  IF  (dir = '1')  THEN -- count up  
      count := count + 1; 
  ELSE        -- count down 
      count := count - 1; 
  END IF; 
 END IF;  -- count holds with no clock 
 
 q <= count;  

-- send count value to output port 
 

END PROCESS; 
END binary; 
 

 45



Mod-16 Up/Down Binary Counter Simulation 

 

 

 46



ENTITY mod10 IS 
PORT ( 
 clock, enable  :IN BIT; 

load, clear   :IN BIT; 
 d     :IN INTEGER RANGE 0 TO 15; 
 q     :OUT INTEGER RANGE 0 TO 15; 
 rco    :OUT BIT 
); 
END mod10; 
 
ARCHITECTURE bcd OF mod10 IS 
BEGIN 
PROCESS (clock, clear, enable) 
      -- asynchronous clear 
 VARIABLE counter :INTEGER RANGE 0 TO 15; 
 
BEGIN 

 47



IF (clear = '1') THEN   counter := 0; 
  -- asynchronous clear has priority 
 
ELSIF (clock'EVENT AND clock = '1') THEN 
 
 IF (load = '1') THEN  counter := d; 
  -- synchronous load 
 
 ELSIF  (enable = '1') THEN 
 
  IF (counter = 9) THEN  -- recycle 
          counter := 0; 
  ELSE    counter := counter + 1; 
  END IF; 
  -- hold count behavior is implied 
 END IF; 
END IF; 

 48



-- rco detects terminal count when enabled 
IF ((counter = 9) AND (enable = '1')) THEN  
    rco <= '1';  
ELSE   rco <= '0'; 
END IF; 
 
q <= counter; -- output counter to ports 
 
END PROCESS; 
END bcd; 

 49



 

 

 50


	Synthesizable Data Types:
	BIT single bit
	 Predefined Standard Data Types
	Design Units
	 PACKAGE  global_defs  IS
	If you only use work library, then you just need to specify use statement

	Defines Multi-Value Logic (MVL) Provides powerful simulation & debugging tool for designers
	 VHDL Operators



